1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
 *  Copyright 2017 Gianmarco Garrisi
 *
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version, or (at your opinion) under the terms
 *  of the Mozilla Public License version 2.0.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#[cfg(not(has_std))]
use std::vec::Vec;

// an improvement in terms of complexity would be to use a bare HashMap
// as vec instead of the IndexMap
use crate::core_iterators::*;

use std::borrow::Borrow;
use std::cmp::{Eq, Ord};
#[cfg(has_std)]
use std::collections::hash_map::RandomState;
use std::hash::{BuildHasher, Hash};
use std::iter::{FromIterator, IntoIterator, Iterator};
use std::mem::swap;

use indexmap::map::{IndexMap, MutableKeys};

/// The Index of the element in the Map
#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq)]
pub(crate) struct Index(pub usize);
/// The Position of the element in the Heap
#[derive(Copy, Clone, Debug, Ord, PartialOrd, Eq, PartialEq)]
pub(crate) struct Position(pub usize);

/// Internal storage of PriorityQueue and DoublePriorityQueue
#[derive(Clone)]
#[cfg(has_std)]
pub(crate) struct Store<I, P, H = RandomState>
where
    I: Hash + Eq,
    P: Ord,
{
    pub map: IndexMap<I, P, H>, // Stores the items and assign them an index
    pub heap: Vec<Index>,       // Implements the heap of indexes
    pub qp: Vec<Position>,      // Performs the translation from the index
    // of the map to the index of the heap
    pub size: usize, // The size of the heap
}

#[derive(Clone)]
#[cfg(not(has_std))]
pub(crate) struct Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
{
    pub map: IndexMap<I, P, H>, // Stores the items and assign them an index
    pub heap: Vec<Index>,       // Implements the heap of indexes
    pub qp: Vec<Position>,      // Performs the translation from the index
    // of the map to the index of the heap
    pub size: usize, // The size of the heap
}

// do not [derive(Eq)] to loosen up trait requirements for other types and impls
impl<I, P, H> Eq for Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
}

impl<I, P, H> Default for Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn default() -> Self {
        Self::with_default_hasher()
    }
}

#[cfg(has_std)]
impl<I, P> Store<I, P>
where
    P: Ord,
    I: Hash + Eq,
{
    /// Creates an empty `Store`
    pub fn new() -> Self {
        Self::with_capacity(0)
    }

    /// Creates an empty `Store` with the specified capacity.
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_and_default_hasher(capacity)
    }
}

impl<I, P, H> Store<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher + Default,
{
    /// Creates an empty `Store` with the default hasher
    pub fn with_default_hasher() -> Self {
        Self::with_capacity_and_default_hasher(0)
    }

    /// Creates an empty `Store` with the specified capacity and default hasher
    pub fn with_capacity_and_default_hasher(capacity: usize) -> Self {
        Self::with_capacity_and_hasher(capacity, H::default())
    }
}

impl<I, P, H> Store<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher,
{
    /// Creates an empty `Store` with the specified hasher
    pub fn with_hasher(hash_builder: H) -> Self {
        Self::with_capacity_and_hasher(0, hash_builder)
    }

    /// Creates an empty `Store` with the specified capacity and hasher
    ///
    /// The internal collections will be able to hold at least `capacity`
    /// elements without reallocating.
    /// If `capacity` is 0, there will be no allocation.
    pub fn with_capacity_and_hasher(capacity: usize, hash_builder: H) -> Self {
        Self {
            map: IndexMap::with_capacity_and_hasher(capacity, hash_builder),
            heap: Vec::with_capacity(capacity),
            qp: Vec::with_capacity(capacity),
            size: 0,
        }
    }

    /// Returns an iterator in arbitrary order over the
    /// (item, priority) elements in the queue
    pub fn iter(&self) -> Iter<I, P> {
        Iter {
            iter: self.map.iter(),
        }
    }
    // reserve_exact -> IndexMap does not implement reserve_exact

    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the given `PriorityQueue`. The collection may reserve more space to avoid
    /// frequent reallocations. After calling `reserve`, capacity will be
    /// greater than or equal to `self.len() + additional`. Does nothing if
    /// capacity is already sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    pub fn reserve(&mut self, additional: usize) {
        self.map.reserve(additional);
        self.heap.reserve(additional);
        self.qp.reserve(additional);
    }
}

impl<I, P, H> Store<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
{
    /// Returns the number of elements the internal map can hold without
    /// reallocating.
    ///
    /// This number is a lower bound; the map might be able to hold more,
    /// but is guaranteed to be able to hold at least this many.
    #[inline(always)]
    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }

    /// Shrinks the capacity of the internal data structures
    /// that support this operation as much as possible.
    #[inline(always)]
    pub fn shrink_to_fit(&mut self) {
        self.heap.shrink_to_fit();
        self.qp.shrink_to_fit();
    }

    /// Returns the number of elements in the priority queue.
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.size
    }

    /// Returns true if the priority queue contains no elements.
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.size == 0
    }

    /// Swap two elements keeping a consistent state.
    ///
    /// Computes in **O(1)** time
    #[inline(always)]
    pub fn swap(&mut self, a: Position, b: Position) {
        self.qp.swap(
            unsafe { self.heap.get_unchecked(a.0) }.0,
            unsafe { self.heap.get_unchecked(b.0) }.0,
        );
        self.heap.swap(a.0, b.0);
    }

    /// Remove and return the element with the max priority
    /// and swap it with the last element keeping a consistent
    /// state.
    ///
    /// Computes in **O(1)** time (average)
    pub fn swap_remove(&mut self, position: Position) -> Option<(I, P)> {
        // swap_remove the head
        let head: Index = self.heap.swap_remove(position.0);
        self.size -= 1;
        // swap remove the old heap head from the qp
        if self.size == position.0 {
            self.qp.swap_remove(head.0);
            if let Some(i) = self.qp.get(head.0) {
                unsafe {
                    *self.heap.get_unchecked_mut(i.0) = head;
                }
            }
            return self.map.swap_remove_index(head.0);
        }
        unsafe {
            *self
                .qp
                .get_unchecked_mut(self.heap.get_unchecked(position.0).0) = position;
        }
        self.qp.swap_remove(head.0);
        if head.0 < self.size {
            unsafe {
                *self.heap.get_unchecked_mut(self.qp.get_unchecked(head.0).0) = head;
            }
        }
        // swap remove from the map and return to the client
        self.map.swap_remove_index(head.0)
    }

    #[inline(always)]
    pub unsafe fn get_priority_from_position(&self, position: Position) -> &P {
        self.map
            .get_index(self.heap.get_unchecked(position.0).0)
            .unwrap()
            .1
    }
}

impl<I, P, H> Store<I, P, H>
where
    P: Ord,
    I: Hash + Eq,
    H: BuildHasher,
{
    /// Change the priority of an Item returning the old value of priority,
    /// or `None` if the item wasn't in the queue.
    ///
    /// The argument `item` is only used for lookup, and is not used to overwrite the item's data
    /// in the priority queue.
    ///
    /// The item is found in **O(1)** thanks to the hash table.
    /// The operation is performed in **O(log(N))** time.
    pub fn change_priority<Q: ?Sized>(
        &mut self,
        item: &Q,
        mut new_priority: P,
    ) -> Option<(P, Position)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        let Store { map, qp, .. } = self;
        map.get_full_mut(item).map(|(index, _, p)| {
            swap(p, &mut new_priority);
            let pos = unsafe { *qp.get_unchecked(index) };
            (new_priority, pos)
        })
    }

    /// Change the priority of an Item using the provided function.
    /// The item is found in **O(1)** thanks to the hash table.
    /// The operation is performed in **O(log(N))** time (worst case).
    pub fn change_priority_by<Q: ?Sized, F>(
        &mut self,
        item: &Q,
        priority_setter: F,
    ) -> Option<Position>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
        F: FnOnce(&mut P),
    {
        let Store { map, qp, .. } = self;
        map.get_full_mut(item).map(|(index, _, p)| {
            priority_setter(p);
            unsafe { *qp.get_unchecked(index) }
        })
    }

    /// Get the priority of an item, or `None`, if the item is not in the queue
    pub fn get_priority<Q: ?Sized>(&self, item: &Q) -> Option<&P>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.map.get(item)
    }

    /// Get the couple (item, priority) of an arbitrary element, as reference
    /// or `None` if the item is not in the queue.
    pub fn get<Q: ?Sized>(&self, item: &Q) -> Option<(&I, &P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.map.get_full(item).map(|(_, k, v)| (k, v))
    }

    /// Get the couple (item, priority) of an arbitrary element, or `None`
    /// if the item was not in the queue.
    ///
    /// The item is a mutable reference, but it's a logic error to modify it
    /// in a way that change the result of  `Hash` or `Eq`.
    ///
    /// The priority cannot be modified with a call to this function.
    /// To modify the priority use `push`, `change_priority` or
    /// `change_priority_by`.
    pub fn get_mut<Q: ?Sized>(&mut self, item: &Q) -> Option<(&mut I, &P)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.map.get_full_mut2(item).map(|(_, k, v)| (k, &*v))
    }

    pub fn remove<Q: ?Sized>(&mut self, item: &Q) -> Option<(I, P, Position)>
    where
        I: Borrow<Q>,
        Q: Eq + Hash,
    {
        self.map.swap_remove_full(item).map(|(i, item, priority)| {
            let i = Index(i);
            self.size -= 1;

            let pos: Position = self.qp.swap_remove(i.0);
            self.heap.swap_remove(pos.0);
            if i.0 < self.size {
                unsafe {
                    let qpi = self.qp.get_unchecked_mut(i.0);
                    if qpi.0 == self.size {
                        *qpi = pos;
                    } else {
                        *self.heap.get_unchecked_mut(qpi.0) = i;
                    }
                }
            }
            if pos.0 < self.size {
                unsafe {
                    let heap_pos = self.heap.get_unchecked_mut(pos.0);
                    if heap_pos.0 == self.size {
                        *heap_pos = i;
                    } else {
                        *self.qp.get_unchecked_mut(heap_pos.0) = pos;
                    }
                }
            }
            (item, priority, pos)
        })
    }

    /// Returns the items not ordered
    pub fn into_vec(self) -> Vec<I> {
        self.map.into_iter().map(|(i, _)| i).collect()
    }

    /// Drops all items from the priority queue
    pub fn clear(&mut self) {
        self.heap.clear();
        self.qp.clear();
        self.map.clear();
        self.size = 0;
    }

    /// Move all items of the `other` queue to `self`
    /// ignoring the items Eq to elements already in `self`
    /// At the end, `other` will be empty.
    ///
    /// **Note** that at the end, the priority of the duplicated elements
    /// inside self may be the one of the elements in other,
    /// if other is longer than self
    pub fn append(&mut self, other: &mut Self) {
        if other.size > self.size {
            std::mem::swap(self, other);
        }
        if other.size == 0 {
            return;
        }
        let drain = other.map.drain(..);
        // what should we do for duplicated keys?
        // ignore
        for (k, v) in drain {
            if !self.map.contains_key(&k) {
                let i = self.size;
                self.map.insert(k, v);
                self.heap.push(Index(i));
                self.qp.push(Position(i));
                self.size += 1;
            }
        }
        other.clear();
    }
}

impl<I, P, H> IntoIterator for Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    type Item = (I, P);
    type IntoIter = IntoIter<I, P>;
    fn into_iter(self) -> IntoIter<I, P> {
        IntoIter {
            iter: self.map.into_iter(),
        }
    }
}

impl<'a, I, P, H> IntoIterator for &'a Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    type Item = (&'a I, &'a P);
    type IntoIter = Iter<'a, I, P>;
    fn into_iter(self) -> Iter<'a, I, P> {
        Iter {
            iter: self.map.iter(),
        }
    }
}

use std::cmp::PartialEq;

impl<I, P1, H1, P2, H2> PartialEq<Store<I, P2, H2>> for Store<I, P1, H1>
where
    I: Hash + Eq,
    P1: Ord,
    P1: PartialEq<P2>,
    Option<P1>: PartialEq<Option<P2>>,
    P2: Ord,
    H1: BuildHasher,
    H2: BuildHasher,
{
    fn eq(&self, other: &Store<I, P2, H2>) -> bool {
        self.map == other.map
    }
}

impl<I, P, H> From<Vec<(I, P)>> for Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn from(vec: Vec<(I, P)>) -> Self {
        let mut store = Self::with_capacity_and_hasher(vec.len(), <_>::default());
        let mut i = 0;
        for (item, priority) in vec {
            if !store.map.contains_key(&item) {
                store.map.insert(item, priority);
                store.qp.push(Position(i));
                store.heap.push(Index(i));
                i += 1;
            }
        }
        store.size = i;
        store
    }
}

impl<I, P, H> FromIterator<(I, P)> for Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher + Default,
{
    fn from_iter<IT>(iter: IT) -> Self
    where
        IT: IntoIterator<Item = (I, P)>,
    {
        let iter = iter.into_iter();
        let (min, max) = iter.size_hint();
        let mut store = if let Some(max) = max {
            Self::with_capacity_and_hasher(max, <_>::default())
        } else if min > 0 {
            Self::with_capacity_and_hasher(min, <_>::default())
        } else {
            Self::with_hasher(<_>::default())
        };
        for (item, priority) in iter {
            if store.map.contains_key(&item) {
                let (_, old_item, old_priority) = store.map.get_full_mut2(&item).unwrap();
                *old_item = item;
                *old_priority = priority;
            } else {
                store.map.insert(item, priority);
                store.qp.push(Position(store.size));
                store.heap.push(Index(store.size));
                store.size += 1;
            }
        }
        store
    }
}

impl<I, P, H> Extend<(I, P)> for Store<I, P, H>
where
    I: Hash + Eq,
    P: Ord,
    H: BuildHasher,
{
    fn extend<T: IntoIterator<Item = (I, P)>>(&mut self, iter: T) {
        for (item, priority) in iter {
            if self.map.contains_key(&item) {
                let (_, old_item, old_priority) = self.map.get_full_mut2(&item).unwrap();
                *old_item = item;
                *old_priority = priority;
            } else {
                self.map.insert(item, priority);
                self.qp.push(Position(self.size));
                self.heap.push(Index(self.size));
                self.size += 1;
            }
        }
    }
}

use std::fmt;
impl<I, P, H> fmt::Debug for Store<I, P, H>
where
    I: fmt::Debug + Hash + Eq,
    P: fmt::Debug + Ord,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_map()
            .entries(
                self.heap
                    .iter()
                    .map(|&i| (i, self.map.get_index(i.0).unwrap())),
            )
            .finish()
    }
}

#[cfg(feature = "serde")]
mod serde {
    use crate::store::{Index, Position, Store};

    use std::cmp::{Eq, Ord};
    use std::collections::hash_map::RandomState;
    use std::hash::{BuildHasher, Hash};
    use std::marker::PhantomData;

    use serde::ser::{Serialize, SerializeSeq, Serializer};

    impl<I, P, H> Serialize for Store<I, P, H>
    where
        I: Hash + Eq + Serialize,
        P: Ord + Serialize,
        H: BuildHasher,
    {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            let mut map_serializer = serializer.serialize_seq(Some(self.size))?;
            for (k, v) in &self.map {
                map_serializer.serialize_element(&(k, v))?;
            }
            map_serializer.end()
        }
    }

    use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor};
    impl<'de, I, P, H> Deserialize<'de> for Store<I, P, H>
    where
        I: Hash + Eq + Deserialize<'de>,
        P: Ord + Deserialize<'de>,
        H: BuildHasher + Default,
    {
        fn deserialize<D>(deserializer: D) -> Result<Store<I, P, H>, D::Error>
        where
            D: Deserializer<'de>,
        {
            deserializer.deserialize_seq(StoreVisitor {
                marker: PhantomData,
            })
        }
    }

    struct StoreVisitor<I, P, H = RandomState>
    where
        I: Hash + Eq,
        P: Ord,
    {
        marker: PhantomData<Store<I, P, H>>,
    }
    impl<'de, I, P, H> Visitor<'de> for StoreVisitor<I, P, H>
    where
        I: Hash + Eq + Deserialize<'de>,
        P: Ord + Deserialize<'de>,
        H: BuildHasher + Default,
    {
        type Value = Store<I, P, H>;

        fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            write!(formatter, "A priority queue")
        }

        fn visit_unit<E>(self) -> Result<Self::Value, E> {
            Ok(Store::with_default_hasher())
        }

        fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
        where
            A: SeqAccess<'de>,
        {
            let mut store: Store<I, P, H> = if let Some(size) = seq.size_hint() {
                Store::with_capacity_and_default_hasher(size)
            } else {
                Store::with_default_hasher()
            };

            while let Some((item, priority)) = seq.next_element()? {
                store.map.insert(item, priority);
                store.qp.push(Position(store.size));
                store.heap.push(Index(store.size));
                store.size += 1;
            }
            Ok(store)
        }
    }
}