1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use std::cmp::{Ord, Ordering, PartialOrd};
use std::fmt;
use std::ops::{Add, AddAssign, Sub, SubAssign};
use std::time::Duration;

/// A point-in-time wall-clock measurement.
///
/// Unlike the stdlib `Instant`, this type has a meaningful difference: it is intended to be opaque,
/// but the internal value _can_ be accessed.  There are no guarantees here and depending on this
/// value directly is proceeding at your own risk. ⚠️
///
/// An `Instant` is 8 bytes.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Instant(pub(crate) u64);

impl Instant {
    /// Gets the current time, scaled to reference time.
    ///
    /// This method depends on a lazily initialized global clock, which can take up to 200ms to
    /// initialize and calibrate itself.
    ///
    /// This method is the spiritual equivalent of [`std::time::Instant::now`].  It is guaranteed to
    /// return a monotonically increasing value.
    pub fn now() -> Instant {
        crate::get_now()
    }

    /// Gets the most recent current time, scaled to reference time.
    ///
    /// This method provides ultra-low-overhead access to a slightly-delayed version of the current
    /// time.  Instead of querying the underlying source clock directly, a shared, global value is
    /// read directly without the need to scale to reference time.
    ///
    /// The value is updated by running an "upkeep" thread or by calling [`quanta::set_recent`].  An
    /// upkeep thread can be configured and spawned via [`Builder`].
    ///
    /// If the upkeep thread has not been started, or no value has been set manually, a lazily
    /// initialized global clock will be used to get the current time.  This clock can take up to
    /// 200ms to initialize and calibrate itself.
    pub fn recent() -> Instant {
        crate::get_recent()
    }

    /// Returns the amount of time elapsed from another instant to this one.
    ///
    /// # Panics
    ///
    /// This function will panic if `earlier` is later than `self`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use quanta::Clock;
    /// use std::time::Duration;
    /// use std::thread::sleep;
    ///
    /// let mut clock = Clock::new();
    /// let now = clock.now();
    /// sleep(Duration::new(1, 0));
    /// let new_now = clock.now();
    /// println!("{:?}", new_now.duration_since(now));
    /// ```
    pub fn duration_since(&self, earlier: Instant) -> Duration {
        self.0
            .checked_sub(earlier.0)
            .map(Duration::from_nanos)
            .expect("supplied instant is later than self")
    }

    /// Returns the amount of time elapsed from another instant to this one, or `None` if that
    /// instant is earlier than this one.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use quanta::Clock;
    /// use std::time::Duration;
    /// use std::thread::sleep;
    ///
    /// let mut clock = Clock::new();
    /// let now = clock.now();
    /// sleep(Duration::new(1, 0));
    /// let new_now = clock.now();
    /// println!("{:?}", new_now.checked_duration_since(now));
    /// println!("{:?}", now.checked_duration_since(new_now)); // None
    /// ```
    pub fn checked_duration_since(&self, earlier: Instant) -> Option<Duration> {
        self.0.checked_sub(earlier.0).map(Duration::from_nanos)
    }

    /// Returns the amount of time elapsed from another instant to this one, or zero duration if
    /// that instant is earlier than this one.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use quanta::Clock;
    /// use std::time::Duration;
    /// use std::thread::sleep;
    ///
    /// let mut clock = Clock::new();
    /// let now = clock.now();
    /// sleep(Duration::new(1, 0));
    /// let new_now = clock.now();
    /// println!("{:?}", new_now.saturating_duration_since(now));
    /// println!("{:?}", now.saturating_duration_since(new_now)); // 0ns
    /// ```
    pub fn saturating_duration_since(&self, earlier: Instant) -> Duration {
        self.checked_duration_since(earlier)
            .unwrap_or_else(|| Duration::new(0, 0))
    }

    /// Returns `Some(t)` where `t` is the time `self + duration` if `t` can be represented as
    /// `Instant` (which means it's inside the bounds of the underlying data structure), `None`
    /// otherwise.
    pub fn checked_add(&self, duration: Duration) -> Option<Instant> {
        self.0.checked_add(duration.as_nanos() as u64).map(Instant)
    }

    /// Returns `Some(t)` where `t` is the time `self - duration` if `t` can be represented as
    /// `Instant` (which means it's inside the bounds of the underlying data structure), `None`
    /// otherwise.
    pub fn checked_sub(&self, duration: Duration) -> Option<Instant> {
        self.0.checked_sub(duration.as_nanos() as u64).map(Instant)
    }

    /// Gets the inner value of this `Instant`.
    pub fn as_u64(&self) -> u64 {
        self.0
    }
}

impl Add<Duration> for Instant {
    type Output = Instant;

    /// # Panics
    ///
    /// This function may panic if the resulting point in time cannot be represented by the
    /// underlying data structure. See [`Instant::checked_add`] for a version without panic.
    fn add(self, other: Duration) -> Instant {
        self.checked_add(other)
            .expect("overflow when adding duration to instant")
    }
}

impl AddAssign<Duration> for Instant {
    fn add_assign(&mut self, other: Duration) {
        // This is not millenium-safe, but, I think that's OK. :)
        self.0 = self.0 + other.as_nanos() as u64;
    }
}

impl Sub<Duration> for Instant {
    type Output = Instant;

    fn sub(self, other: Duration) -> Instant {
        self.checked_sub(other)
            .expect("overflow when subtracting duration from instant")
    }
}

impl SubAssign<Duration> for Instant {
    fn sub_assign(&mut self, other: Duration) {
        // This is not millenium-safe, but, I think that's OK. :)
        self.0 = self.0 - other.as_nanos() as u64;
    }
}

impl Sub<Instant> for Instant {
    type Output = Duration;

    fn sub(self, other: Instant) -> Duration {
        self.duration_since(other)
    }
}

impl PartialOrd for Instant {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Instant {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl fmt::Debug for Instant {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

#[cfg(feature = "prost")]
impl Into<prost_types::Timestamp> for Instant {
    fn into(self) -> prost_types::Timestamp {
        let dur = Duration::from_nanos(self.0);
        let secs = if dur.as_secs() > i64::MAX as u64 {
            i64::MAX
        } else {
            dur.as_secs() as i64
        };
        let nsecs = if dur.subsec_nanos() > i32::MAX as u32 {
            i32::MAX
        } else {
            dur.subsec_nanos() as i32
        };
        prost_types::Timestamp {
            seconds: secs,
            nanos: nsecs,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Instant;
    use crate::{with_clock, Clock};
    use std::thread;
    use std::time::Duration;

    #[test]
    #[cfg_attr(
        all(target_arch = "wasm32", target_os = "unknown"),
        ignore = "WASM thread cannot sleep"
    )]
    fn test_now() {
        let t0 = Instant::now();
        thread::sleep(Duration::from_millis(15));
        let t1 = Instant::now();

        assert!(t0.as_u64() > 0);
        assert!(t1.as_u64() > 0);

        let result = t1 - t0;
        let threshold = Duration::from_millis(14);
        assert!(result > threshold);
    }

    #[test]
    #[cfg_attr(
        all(target_arch = "wasm32", target_os = "unknown"),
        ignore = "WASM thread cannot sleep"
    )]
    fn test_recent() {
        // Ensures that the recent global value is zero so that the fallback logic can kick in.
        crate::set_recent(Instant(0));

        let t0 = Instant::recent();
        thread::sleep(Duration::from_millis(15));
        let t1 = Instant::recent();

        assert!(t0.as_u64() > 0);
        assert!(t1.as_u64() > 0);

        let result = t1 - t0;
        let threshold = Duration::from_millis(14);
        assert!(result > threshold);

        crate::set_recent(Instant(1));
        let t2 = Instant::recent();
        thread::sleep(Duration::from_millis(15));
        let t3 = Instant::recent();
        assert_eq!(t2, t3);
    }

    #[test]
    #[cfg_attr(
        all(target_arch = "wasm32", target_os = "unknown"),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    fn test_mocking() {
        let (clock, mock) = Clock::mock();
        with_clock(&clock, move || {
            let t0 = Instant::now();
            mock.increment(42);
            let t1 = Instant::now();

            assert_eq!(t0.as_u64(), 0);
            assert_eq!(t1.as_u64(), 42);

            let t2 = Instant::recent();
            mock.increment(420);
            let t3 = Instant::recent();

            assert_eq!(t2.as_u64(), 42);
            assert_eq!(t3.as_u64(), 462);

            crate::set_recent(Instant(1440));
            let t4 = Instant::recent();
            assert_eq!(t4.as_u64(), 1440);
        })
    }
}