1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
mod error;
mod formatters;
mod guard;
mod transformers;
pub(crate) use error::*;
use psl::datamodel_connector::{ConnectorCapabilities, ConnectorCapability};
use crate::{
interpreter::ExpressionResult, FilteredQuery, ManyRecordsQuery, Query, QueryGraphBuilderResult, QueryOptions,
ReadQuery,
};
use guard::*;
use itertools::Itertools;
use petgraph::{
graph::*,
visit::{EdgeRef as PEdgeRef, NodeIndexable},
*,
};
use query_structure::{FieldSelection, IntoFilter, QueryArguments, SelectionResult};
use std::{collections::HashSet, fmt};
pub type QueryGraphResult<T> = std::result::Result<T, QueryGraphError>;
#[allow(clippy::large_enum_variant)]
pub(crate) enum Node {
/// Nodes representing actual queries to the underlying connector.
Query(Query),
/// Flow control nodes.
Flow(Flow),
// Todo this strongly indicates that the query graph has to change, probably towards a true AST for the interpretation,
// instead of this unsatisfying in-between of high-level abstraction over the incoming query and concrete interpreter actions.
/// A general computation to perform. As opposed to `Query`, this doesn't invoke the connector.
Computation(Computation),
/// Empty node.
Empty,
}
impl Node {
pub(crate) fn as_query(&self) -> Option<&Query> {
if let Self::Query(v) = self {
Some(v)
} else {
None
}
}
pub(crate) fn as_query_mut(&mut self) -> Option<&mut Query> {
if let Self::Query(v) = self {
Some(v)
} else {
None
}
}
}
impl From<Query> for Node {
fn from(q: Query) -> Node {
Node::Query(q)
}
}
impl From<Flow> for Node {
fn from(f: Flow) -> Node {
Node::Flow(f)
}
}
pub enum Flow {
/// Expresses a conditional control flow in the graph.
/// Possible outgoing edges are `then` and `else`, each at most once, with `then` required to be present.
If(Box<dyn FnOnce() -> bool + Send + Sync + 'static>),
/// Returns a fixed set of results at runtime.
Return(Option<Vec<SelectionResult>>),
}
impl Flow {
pub fn default_if() -> Self {
Self::If(Box::new(|| true))
}
}
// Current limitation: We need to narrow it down to ID diffs for Hash and EQ.
pub(crate) enum Computation {
Diff(DiffNode),
}
impl Computation {
pub fn empty_diff() -> Self {
Self::Diff(DiffNode {
left: HashSet::new(),
right: HashSet::new(),
})
}
}
pub struct DiffNode {
pub left: HashSet<SelectionResult>,
pub right: HashSet<SelectionResult>,
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct NodeRef {
node_ix: NodeIndex,
}
impl NodeRef {
/// Returns the unique identifier of the Node.
pub fn id(&self) -> String {
self.node_ix.index().to_string()
}
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct EdgeRef {
edge_ix: EdgeIndex,
}
impl EdgeRef {
/// Returns the unique identifier of the Edge.
pub fn id(&self) -> String {
self.edge_ix.index().to_string()
}
}
pub(crate) type ProjectedDataDependencyFn =
Box<dyn FnOnce(Node, Vec<SelectionResult>) -> QueryGraphBuilderResult<Node> + Send + Sync + 'static>;
pub(crate) type DataDependencyFn =
Box<dyn FnOnce(Node, &ExpressionResult) -> QueryGraphBuilderResult<Node> + Send + Sync + 'static>;
/// Stored on the edges of the QueryGraph, a QueryGraphDependency contains information on how children are connected to their parents,
/// expressing for example the need for additional information from the parent to be able to execute at runtime.
pub(crate) enum QueryGraphDependency {
/// Simple dependency indicating order of execution. Effectively an ordering and reachability tool for now.
ExecutionOrder,
/// Performs a transformation on the target node based on the source node result..
DataDependency(DataDependencyFn),
/// More specialized version of `DataDependency` with more guarantees and side effects.
///
/// Performs a transformation on the target node based on the requested selection on the source result (represented as a single merged `FieldSelection`).
/// Assumes that the source result can be converted into the requested selection, else a runtime error will occur.
/// The `FieldSelection` is used to determine the set of values to extract from the source result.
///
/// Important note: As opposed to `DataDependency`, this dependency guarantees that if the closure is called, the source result contains at least the requested selection.
/// To achieve that, the query graph is post-processed in the `finalize` and reloads are injected at points where a selection is not fulfilled.
/// See `insert_reloads` for more information.
ProjectedDataDependency(FieldSelection, ProjectedDataDependencyFn), // [Composites] todo rename
/// Only valid in the context of a `If` control flow node.
Then,
/// Only valid in the context of a `If` control flow node.
Else,
}
/// A graph representing an abstract view of queries and their execution dependencies.
///
/// Graph invariants (TODO put checks into the code?):
/// - Directed, acyclic.
///
/// - Node IDs are unique and stable.
///
/// - The graph may have multiple result nodes, and multiple paths in the graph may point to result nodes, but only one result is serialized.
/// Note: The exact rules determining the final result are subject of the graph translation.
///
/// - Currently, Nodes are allowed to have multiple parents, but the following invariant applies: They may only refer to their parent and / or one of its ancestors.
/// Note: This rule guarantees that the dependent ancestor node result is always in scope for fulfillment of dependencies.
///
/// - Following the above, sibling dependencies are disallowed as well.
///
/// - Edges are ordered.
/// Node: Their evaluation is performed from low to high ordering, unless other rules require reshuffling the edges during translation.
#[derive(Default)]
pub struct QueryGraph {
graph: InnerGraph,
/// Designates the nodes that are returning the result of the entire QueryGraph.
/// If no nodes are set, the interpretation will take the result of the
/// last statement derived from the graph.
result_nodes: Vec<NodeIndex>,
/// Pairs of nodes marked for parent child swap.
/// The first `NodeRef` of the tuple is the parent, the second one the child.
/// The child will become the parents new parent when the graph is finalized.
/// More docs can be found on `swap_marked`.
marked_node_pairs: Vec<(NodeRef, NodeRef)>,
finalized: bool,
/// For now a stupid marker if the query graph needs to be run inside a
/// transaction. Should happen if any of the queries is writing data.
needs_transaction: bool,
/// Already visited nodes.
/// Nodes are visited during query graph processing.
/// Influences traversal rules and how child nodes are treated.
visited: Vec<NodeIndex>,
}
impl fmt::Debug for QueryGraph {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("QueryGraph")
.field("graph", &"InnerGraph")
.field("result_nodes", &self.result_nodes)
.field("marked_node_pairs", &self.marked_node_pairs)
.field("finalized", &self.finalized)
.field("needs_transaction", &self.needs_transaction)
.field("visited", &self.visited)
.finish()
}
}
/// Implementation detail of the QueryGraph.
type InnerGraph = Graph<Guard<Node>, Guard<QueryGraphDependency>>;
impl QueryGraph {
pub fn new() -> Self {
Self {
graph: InnerGraph::new(),
..Default::default()
}
}
pub(crate) fn root<F>(f: F) -> QueryGraphBuilderResult<QueryGraph>
where
F: FnOnce(&mut QueryGraph) -> QueryGraphBuilderResult<()>,
{
let mut graph = QueryGraph::new();
f(&mut graph)?;
Ok(graph)
}
pub fn finalize(&mut self, capabilities: ConnectorCapabilities) -> QueryGraphResult<()> {
if !self.finalized {
self.swap_marked()?;
self.ensure_return_nodes_have_parent_dependency()?;
self.normalize_data_dependencies(capabilities)?;
self.insert_reloads()?;
self.normalize_if_nodes()?;
self.finalized = true;
}
Ok(())
}
pub fn result_nodes(&self) -> Vec<NodeRef> {
self.result_nodes
.iter()
.map(|node_ix| NodeRef { node_ix: *node_ix })
.collect()
}
/// Adds a result node to the graph.
pub fn add_result_node(&mut self, node: &NodeRef) {
self.result_nodes.push(node.node_ix);
}
pub fn mark_visited(&mut self, node: &NodeRef) {
if !self.visited.contains(&node.node_ix) {
trace!("Visited: {}", node.id());
self.visited.push(node.node_ix);
}
}
/// Checks if the given node is marked as one of the result nodes in the graph.
pub fn is_result_node(&self, node: &NodeRef) -> bool {
self.result_nodes.iter().any(|rn| rn.index() == node.node_ix.index())
}
/// Checks if the subgraph starting at the given node contains the node designated as the overall result.
pub fn subgraph_contains_result(&self, node: &NodeRef) -> bool {
if self.is_result_node(node) {
true
} else {
self.outgoing_edges(node).into_iter().any(|edge| {
let child_node = self.edge_target(&edge);
self.subgraph_contains_result(&child_node)
})
}
}
/// Returns all root nodes of the graph.
/// A root node is defined by having no incoming edges.
pub fn root_nodes(&self) -> Vec<NodeRef> {
self.graph
.node_indices()
.filter_map(|node_ix| {
if self.graph.edges_directed(node_ix, Direction::Incoming).next().is_some() {
None
} else {
Some(NodeRef { node_ix })
}
})
.collect()
}
/// Creates a node with content `t` and adds it to the graph.
/// Returns a `NodeRef` to the newly added node.
pub(crate) fn create_node<T>(&mut self, t: T) -> NodeRef
where
T: Into<Node>,
{
let node_ix = self.graph.add_node(Guard::new(t.into()));
NodeRef { node_ix }
}
/// Creates an edge with given `content`, originating from node `from` and pointing to node `to`.
/// Checks are run after edge creation to ensure validity of the query graph.
/// Returns an `EdgeRef` to the newly added edge.
/// Todo currently panics, change interface to result type.
pub(crate) fn create_edge(
&mut self,
from: &NodeRef,
to: &NodeRef,
content: QueryGraphDependency,
) -> QueryGraphResult<EdgeRef> {
let edge_ix = self.graph.add_edge(from.node_ix, to.node_ix, Guard::new(content));
let edge = EdgeRef { edge_ix };
Ok(edge)
}
/// Mark the query graph to need a transaction.
pub(crate) fn flag_transactional(&mut self) {
self.needs_transaction = true;
}
/// If true, the graph should be executed inside of a transaction.
pub(crate) fn needs_transaction(&self) -> bool {
self.needs_transaction
}
/// Returns a reference to the content of `node`, if the content is still present.
pub(crate) fn node_content(&self, node: &NodeRef) -> Option<&Node> {
self.graph.node_weight(node.node_ix).unwrap().borrow()
}
/// Returns a reference to the content of `node`, if the content is still present.
pub(crate) fn node_content_mut(&mut self, node: &NodeRef) -> Option<&mut Node> {
self.graph.node_weight_mut(node.node_ix).unwrap().borrow_mut()
}
/// Returns a reference to the content of `edge`, if the content is still present.
pub(crate) fn edge_content(&self, edge: &EdgeRef) -> Option<&QueryGraphDependency> {
self.graph.edge_weight(edge.edge_ix).unwrap().borrow()
}
/// Returns the node from where `edge` originates (e.g. source).
pub(crate) fn edge_source(&self, edge: &EdgeRef) -> NodeRef {
let (node_ix, _) = self.graph.edge_endpoints(edge.edge_ix).unwrap();
NodeRef { node_ix }
}
/// Returns the node to which `edge` points (e.g. target).
pub(crate) fn edge_target(&self, edge: &EdgeRef) -> NodeRef {
let (_, node_ix) = self.graph.edge_endpoints(edge.edge_ix).unwrap();
NodeRef { node_ix }
}
/// Returns all edges originating from= `node` (e.g. outgoing edges).
pub fn outgoing_edges(&self, node: &NodeRef) -> Vec<EdgeRef> {
self.collect_edges(node, Direction::Outgoing)
}
/// Returns all edges pointing to `node` (e.g. incoming edges).
pub fn incoming_edges(&self, node: &NodeRef) -> Vec<EdgeRef> {
self.collect_edges(node, Direction::Incoming)
}
/// Removes the edge from the graph but leaves the graph intact by keeping the empty
/// edge in the graph by plucking the content of the edge, but not the edge itself.
pub(crate) fn pluck_edge(&mut self, edge: &EdgeRef) -> QueryGraphDependency {
self.graph.edge_weight_mut(edge.edge_ix).unwrap().unset()
}
/// Removes the node from the graph but leaves the graph intact by keeping the empty
/// node in the graph by plucking the content of the node, but not the node itself.
pub(crate) fn pluck_node(&mut self, node: &NodeRef) -> Node {
self.graph.node_weight_mut(node.node_ix).unwrap().unset()
}
/// Completely removes the edge from the graph, returning it's content.
/// This operation is destructive on the underlying graph and invalidates references.
pub(crate) fn remove_edge(&mut self, edge: EdgeRef) -> Option<QueryGraphDependency> {
self.graph.remove_edge(edge.edge_ix).unwrap().into_inner()
}
/// Checks if `child` is a direct child of `parent`.
///
/// Criteria for a direct child (either):
/// - Every node that only has `parent` as their parent.
/// - In case of multiple parents, _all_ parents have already been visited before.
pub fn is_direct_child(&self, parent: &NodeRef, child: &NodeRef) -> bool {
self.incoming_edges(child).into_iter().all(|edge| {
let other_parent = self.edge_source(&edge);
if &other_parent != parent {
self.visited.contains(&other_parent.node_ix)
} else {
true
}
})
}
/// Returns a list of child nodes, together with their child edge for the given `node`.
/// The list contains all children reachable by outgoing edges of `node`.
pub fn child_pairs(&self, node: &NodeRef) -> Vec<(EdgeRef, NodeRef)> {
self.outgoing_edges(node)
.into_iter()
.map(|edge| {
let target = self.edge_target(&edge);
(edge, target)
})
.collect()
}
/// Returns all direct child pairs of `node`.
/// See `is_direct_child` for exact definition of what a direct child encompasses.
pub fn direct_child_pairs(&self, node: &NodeRef) -> Vec<(EdgeRef, NodeRef)> {
self.outgoing_edges(node)
.into_iter()
.filter_map(|edge| {
let child_node = self.edge_target(&edge);
if self.is_direct_child(node, &child_node) {
Some((edge, child_node))
} else {
None
}
})
.collect()
}
/// Internal utility function to collect all edges of defined direction directed to, or originating from, `node`.
fn collect_edges(&self, node: &NodeRef, direction: Direction) -> Vec<EdgeRef> {
let mut edges = self
.graph
.edges_directed(node.node_ix, direction)
.map(|edge| EdgeRef { edge_ix: edge.id() })
.collect::<Vec<_>>();
edges.sort();
edges
}
/// Marks a node pair for swapping.
pub fn mark_nodes(&mut self, parent_node: &NodeRef, child_node: &NodeRef) {
self.marked_node_pairs.push((*parent_node, *child_node));
}
/// Swaps all marked parent-child pairs.
///
/// With this function, given a tuple of `(parent, child)`, `child` will be a parent node of `parent` after the swap has been performed.
///
/// This operation preserves all edges from the parents of `parent` to the node, while inserting new edges from all parents of
/// `parent` to `child`, effectively "pushing the child in the middle" of `parent` and it's parents. The new edges are only expressing
/// exection order, and no node transformation.
///
/// Any edge existing between `parent` and `child` will change direction and will point from `child` to `parent` instead.
///
/// **Important exception**: If a parent node is a `Flow` node, we need to completely remove the edge to the flow node and rewire it to the child.
///
/// ## Example transformation
/// Given the marked pairs `[(A, B), (B, C), (B, D)]` and a graph (depicting the state before the transformation):
/// ```text
/// ┌───┐
/// │ P │
/// └───┘
/// │
/// ▼
/// ┌───┐
/// │ A │
/// └───┘
/// │
/// ▼
/// ┌───┐
/// ┌──│ B │──┐
/// │ └───┘ │
/// │ │
/// ▼ ▼
/// ┌───┐ ┌───┐
/// │ C │ │ D │
/// └───┘ └───┘
/// ```
///
/// The marked pairs express that the operations performed by the contained parents depend on the child operation,
/// hence making it necessary to execute the child operation first.
///
/// Applying the transformations step by step will change the graph as following:
/// (new edges created in a transformation step are marked with *)
/// ```text
/// ┌───┐ ┌───┐ ┌───┐ ┌───┐
/// │ P │ │ P │────────────────┐ ┌──│ P │──────────┐ ┌──│ P │────────┐
/// └───┘ └───┘ 1│ │ └───┘ 1│ │ └───┘ 1│
/// 1│ │ │ 5│ │ 6* │ 5│ 6│ │
/// ▼ │ │ │ ▼ │ │ ▼ │
/// ┌───┐ │ │ │ ┌───┐ │ │ ┌───┐ 7* │
/// │ A │ 5*│ │ │ │ C │ │ │ │ C │───┐ │
/// └───┘ ═(A, B)═▶ │ │ ═(B, C)═▶ │ └───┘ │ ═(B, D)═▶ │ └───┘ │ │
/// 2│ │ │ │ 3│ │ │ 3│ │ │
/// ▼ ▼ │ │ ▼ │ │ │ ▼ │
/// ┌───┐ ┌───┐ │ │ ┌───┐ │ │ │ ┌───┐ │
/// ┌──│ B │──┐ ┌──│ B │──┬────────┐ │ └─▶│ B │─────┐ │ │ │ │ D │ │
/// 3│ └───┘ 4│ 3│ └───┘ 4│ 2│ │ └───┘ │ │ │ │ └───┘ │
/// │ │ │ │ │ │ 4│ 2│ │ │ │ 4│ │
/// ▼ ▼ ▼ ▼ ▼ │ ▼ ▼ │ │ ▼ │ │
/// ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ │ ┌───┐ ┌───┐ │ │ ┌───┐ │ │
/// │ C │ │ D │ │ C │ │ D │ │ A │◀─┘ │ D │ │ A │◀─┘ └─▶│ B │◀──┘ │
/// └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ └───┘ │
/// │ │
/// │ │
/// 2│ ┌───┐ │
/// └──▶│ A │◀─┘
/// └───┘
/// ```
/// [DTODO] put if flow exception illustration here.
fn swap_marked(&mut self) -> QueryGraphResult<()> {
if !self.marked_node_pairs.is_empty() {
trace!("[Graph][Swap] Before shape: {}", self);
}
let mut marked = std::mem::take(&mut self.marked_node_pairs);
marked.reverse(); // Todo: Marked operation order is currently breaking if done bottom-up. Investigate how to fix it.
for (parent_node, child_node) in marked {
// All parents of `parent_node` are becoming a parent of `child_node` as well, except flow nodes.
let parent_edges = self.incoming_edges(&parent_node);
for parent_edge in parent_edges {
let parent_of_parent_node = self.edge_source(&parent_edge);
match self
.node_content(&parent_of_parent_node)
.expect("Expected marked nodes to be non-empty.")
{
// Exception rule: Only swap `Then` and `Else` edges.
Node::Flow(Flow::If(_)) => {
if matches!(
self.edge_content(&parent_edge),
Some(QueryGraphDependency::Then) | Some(QueryGraphDependency::Else)
) {
let content = self
.remove_edge(parent_edge)
.expect("Expected edges between marked nodes to be non-empty.");
self.create_edge(&parent_of_parent_node, &child_node, content)?;
}
}
_ => {
trace!(
"[Graph][Swap] Connecting parent of parent {} with child {}",
parent_of_parent_node.id(),
child_node.id()
);
self.create_edge(
&parent_of_parent_node,
&child_node,
QueryGraphDependency::ExecutionOrder,
)?;
}
}
}
// Find existing edge between parent and child. Can only be one at most.
let existing_edge = self
.graph
.find_edge(parent_node.node_ix, child_node.node_ix)
.map(|edge_ix| EdgeRef { edge_ix });
// Remove edge and reinsert edge in reverse.
if let Some(edge) = existing_edge {
let content = self.pluck_edge(&edge);
self.create_edge(&child_node, &parent_node, content)?;
self.remove_edge(edge);
}
}
Ok(())
}
/// Inserts ordering edges into the graph to prevent interdependency issues when rotating
/// nodes for `if`-flow nodes.
///
/// All sibling nodes of an if-node that are...
/// - ... not an `if`-flow node themself
/// - ... not already connected to the current `if`-flow node in any form (to prevent double edges)
/// - ... not connected to another `if`-flow node with control flow edges (indirect sibling)
/// will be ordered below the currently processed `if`-flow node in execution predence.
///
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─
/// ┌ ─ ─ Parent │─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─
/// └ ─ ─ ─ ─ ─ ─ │ │
/// │ │ │ │
/// │ │ │
/// │ │ │ │
/// ▼ ▼ ▼ ▼ │
/// │ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─
/// ┌ ─ If │ Sibling │ Sibling If │ Sibling If │ │
/// │ └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─
/// │ │ ▲ │ │
/// │ │ │
/// │ └────Inserted ─┘ (Then / Else) │
/// │ Ordering
/// │ ▼ │
/// │ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─
/// │ Already │ Indirect │ │
/// └ ──▶│ connected │ sibling ◀─
/// sibling │ ─ ─ ─ ─ ─ ─ ┘
/// └ ─ ─ ─ ─ ─ ─
/// ```
fn normalize_if_nodes(&mut self) -> QueryGraphResult<()> {
for node_ix in self.graph.node_indices() {
let node = NodeRef { node_ix };
if let Node::Flow(Flow::If(_)) = self.node_content(&node).unwrap() {
let parents = self.incoming_edges(&node);
for parent_edge in parents {
let parent = self.edge_source(&parent_edge);
let siblings = self.child_pairs(&parent);
for (_, sibling) in siblings {
let possible_edge = self.graph.find_edge(node.node_ix, sibling.node_ix);
let is_if_node_child = self.incoming_edges(&sibling).into_iter().any(|edge| {
let content = self.edge_content(&edge).unwrap();
matches!(content, QueryGraphDependency::Then | QueryGraphDependency::Else)
});
if sibling != node
&& possible_edge.is_none()
&& !is_if_node_child
&& !matches!(self.node_content(&sibling).unwrap(), Node::Flow(_))
{
self.create_edge(&node, &sibling, QueryGraphDependency::ExecutionOrder)?;
}
}
}
}
}
Ok(())
}
/// Traverses the graph and ensures that return nodes have correct `ProjectedDataDependency`s on their incoming edges.
///
/// Steps:
/// - Collect & merge the outgoing edge dependencies into a single `FieldSelection`
/// - Transform the incoming edge dependencies of the return nodes with the merged outgoing edge dependencies of the previous step
///
/// This ensures that children nodes of return nodes have the proper data dependencies at their disposal.
/// In case the parent nodes of return nodes do not have a field selection that fullfils the new dependency,
/// a reload node will be inserted in between the parent and the return node by the `insert_reloads` method.
fn ensure_return_nodes_have_parent_dependency(&mut self) -> QueryGraphResult<()> {
let return_nodes: Vec<NodeRef> = self
.graph
.node_indices()
.filter_map(|ix| {
let node = NodeRef { node_ix: ix };
match self.node_content(&node).unwrap() {
Node::Flow(Flow::Return(_)) => Some(node),
_ => None,
}
})
.collect();
for return_node in return_nodes {
let out_edges = self.outgoing_edges(&return_node);
let dependencies: Vec<FieldSelection> = out_edges
.into_iter()
.filter_map(|edge| match self.edge_content(&edge).unwrap() {
QueryGraphDependency::ProjectedDataDependency(ref requested_selection, _) => {
Some(requested_selection.clone())
}
_ => None,
})
.collect();
let dependencies = FieldSelection::union(dependencies);
// Assumption: We currently always have at most one single incoming ProjectedDataDependency edge
// connected to return nodes. This will break if we ever have more.
let in_edges = self.incoming_edges(&return_node);
let incoming_dep_edge = in_edges.into_iter().find(|edge| {
matches!(
self.edge_content(edge),
Some(QueryGraphDependency::ProjectedDataDependency(_, _))
)
});
if let Some(incoming_edge) = incoming_dep_edge {
let source = self.edge_source(&incoming_edge);
let target = self.edge_target(&incoming_edge);
let content = self
.remove_edge(incoming_edge)
.expect("Expected edges between marked nodes to be non-empty.");
if let QueryGraphDependency::ProjectedDataDependency(existing, transformer) = content {
let merged_dependencies = dependencies.merge(existing);
self.create_edge(
&source,
&target,
QueryGraphDependency::ProjectedDataDependency(merged_dependencies, transformer),
)?;
}
}
}
Ok(())
}
/// Traverses the query graph and checks if reloads of nodes are necessary.
/// Whether or not a node needs to be reloaded is determined based on the
/// incoming `ProjectedDataDependency` edge transformers, as those hold the `FieldSelection`s
/// all records of the source result need to contain in order to satisfy dependencies.
///
/// If a node needs to be reloaded, ALL edges going out from the reloaded node need to be rewired, not
/// only unsatified ones.
///
/// ## Example
/// Given a query graph, where 3 children require different set of fields ((A, B), (B, C), (A, D))
/// to execute their dependent operations:
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─
/// Parent │─────────┬───────────────┐
/// └ ─ ─ ─ ─ ─ ─ │ │
/// │ │ │
/// (A, B) (B, C) (A, D)
/// │ │ │
/// ▼ ▼ ▼
/// ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─
/// Child A │ Child B │ Child C │
/// └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─
/// ```
/// However, `Parent` only returns `(A, B)`, for example, because that's the primary ID of the parent model
/// and `Parent` is an operation that only returns IDs (e.g. update, updateMany).
///
/// In order to satisfy children B and C, the graph is altered by this post-processing call:
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─
/// Parent │
/// └ ─ ─ ─ ─ ─ ─
/// │
/// (A, B) (== Primary ID)
/// │
/// ▼
/// ┌────────────┐
/// │ Reload │─────────┬───────────────┐
/// └────────────┘ │ │
/// │ │ │
/// (A, B) (B, C) (A, D)
/// │ │ │
/// ▼ ▼ ▼
/// ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─
/// Child A │ Child B │ Child C │
/// └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─
/// ```
///
/// The edges from `Parent` to all dependent children are removed from the graph and reinserted in order
/// on the reload node.
///
/// The `Reload` node is always a "find many" query.
/// Unwraps are safe because we're operating on the unprocessed state of the graph (`Expressionista` changes that).
fn insert_reloads(&mut self) -> QueryGraphResult<()> {
let reloads = self.find_unsatisfied_dependencies();
for (node, identifiers) in reloads {
let query = self.node_content(&node).and_then(|node| node.as_query()).unwrap();
trace!(
"Query {:?} does not return requested selection {:?} and will be reloaded.",
query,
identifiers.prisma_names().collect::<Vec<_>>()
);
// Create reload node and connect it to the `node`.
let model = query.model();
let primary_model_id = model.primary_identifier();
let read_query = ReadQuery::ManyRecordsQuery(ManyRecordsQuery {
name: "reload".into(),
alias: None,
model: model.clone(),
args: QueryArguments::new(model),
selected_fields: identifiers.merge(primary_model_id.clone()),
nested: vec![],
selection_order: vec![],
options: QueryOptions::none(),
relation_load_strategy: query_structure::RelationLoadStrategy::Query,
});
let reload_query = Query::Read(read_query);
let reload_node = self.create_node(reload_query);
self.create_edge(
&node,
&reload_node,
QueryGraphDependency::ProjectedDataDependency(
primary_model_id,
Box::new(|mut reload_node, parent_result| {
if let Node::Query(Query::Read(ReadQuery::ManyRecordsQuery(ref mut mr))) = reload_node {
mr.set_filter(parent_result.filter());
}
Ok(reload_node)
}),
),
)?;
// Remove all edges from node to children, reattach them to the reload node
for edge in self.outgoing_edges(&node) {
let target = self.edge_target(&edge);
let content = self.remove_edge(edge).unwrap();
self.create_edge(&reload_node, &target, content)?;
}
}
Ok(())
}
/// Traverses the query graph and finds the nodes that need their selection set to be updated so that they fulfill the data dependencies of their children.
/// We determine that based on incoming `ProjectedDataDependency` edge transformers, as those hold the `FieldSelection`s
/// that all records of the source result need to contain in order to satisfy dependencies.
///
/// ## Example
/// Given a query graph, where 3 children require different set of fields ((A, B), (B, C), (A, D))
/// to execute their dependent operations:
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─
/// Parent (A, B) │─────────┬───────────────┐
/// └ ─ ─ ─ ─ ─ ─ ─ ─ │ │
/// │ │ │
/// (A, B) (B, C) (A, D)
/// │ │ │
/// ▼ ▼ ▼
/// ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ─
/// Child A │ | Child B │ | Child C │
/// └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ─ ─ ─
/// ```
/// However, `Parent` only returns `(A, B)`, for example, because that's the primary ID of the parent model.
///
/// In order to satisfy children B and C, the graph is altered by this post-processing call:
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
/// Parent (A, B, C, D) │─────────┬───────────────┐
/// └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │ │
/// │ │ │
/// (A, B) (B, C) (A, D)
/// │ │ │
/// ▼ ▼ ▼
/// ┌ ─ ─ ─ ─ ─ ─ ┌ ─ ─ ─ ─ ─ ┐ ┌ ─ ─ ─ ─ ─ ┐
/// Child A │ | Child B │ | Child C │
/// └ ─ ─ ─ ─ ─ ─ └ ─ ─ ─ ── - └ ─ ─ ─ ── ─
/// ```
/// Note that not all connectors can have their nodes' field selection updated.
/// This is only possible when the parent node _can_ fulfill the selection set.
/// In the case of updates and inserts, for instance, only connectors supporting `InsertReturning` and `UpdateReturning` can do it,
/// or else they're only able to return the primary identifier of the model inserted or updated.
fn normalize_data_dependencies(&mut self, capabilities: ConnectorCapabilities) -> QueryGraphResult<()> {
let unsatisfied_deps = self.find_unsatisfied_dependencies();
for (node, identifiers) in unsatisfied_deps {
let query = self
.node_content_mut(&node)
.and_then(|node| node.as_query_mut())
.unwrap();
// If the connector does not support returning more than the primary identifier for an update,
// do not update the selection set.
if query.is_update_one() && !capabilities.contains(ConnectorCapability::UpdateReturning) {
continue;
}
// If the connector does not support returning more than the primary identifier for a create,
// do not update the selection set.
if query.is_create_one() && !capabilities.contains(ConnectorCapability::InsertReturning) {
continue;
}
// If the connector does not support returning more than the primary identifier for a delete,
// do not update the selection set.
if query.is_delete_one() && !capabilities.contains(ConnectorCapability::DeleteReturning) {
continue;
}
trace!(
"Query {:?} does not return requested selection {:?} and will be updated.",
query,
identifiers.prisma_names().collect::<Vec<_>>()
);
query.satisfy_dependency(identifiers);
}
Ok(())
}
/// Traverses the query graph and finds the query nodes that don't fulfill their children data dependencies.
/// We determine that based on incoming `ProjectedDataDependency` edge transformers, as those hold the `FieldSelection`s
/// that all records of the source result need to contain in order to satisfy dependencies.
fn find_unsatisfied_dependencies(&self) -> Vec<(NodeRef, FieldSelection)> {
self.graph
.node_indices()
.filter_map(|ix| {
let node = NodeRef { node_ix: ix };
if let Node::Query(q) = self.node_content(&node).unwrap() {
let edges = self.outgoing_edges(&node);
let unsatisfied_dependencies: Vec<_> = edges
.into_iter()
.filter_map(|edge| match self.edge_content(&edge).unwrap() {
QueryGraphDependency::ProjectedDataDependency(ref requested_selection, _)
if !q.satisfies(requested_selection) =>
{
Some(requested_selection.clone())
}
_ => None,
})
.collect();
if unsatisfied_dependencies.is_empty() {
None
} else {
Some((node, FieldSelection::union(unsatisfied_dependencies)))
}
} else {
None
}
})
.collect()
}
}
pub trait ToGraphviz {
fn to_graphviz(&self) -> String;
}
impl ToGraphviz for QueryGraph {
fn to_graphviz(&self) -> String {
let nodes = self
.graph
.node_indices()
.map(|idx| (idx, self.graph.node_weight(idx).unwrap().borrow().unwrap()))
.map(|(idx, node)| {
if self.is_result_node(&NodeRef { node_ix: idx }) {
format!(
" {} [label=\"{}\", fillcolor=blue, style=filled, shape=rectangle, fontcolor=white]",
idx.index(),
node.to_graphviz().replace('\"', "\\\"")
)
} else if self
.root_nodes()
.iter()
.any(|root_node| root_node == &NodeRef { node_ix: idx })
{
format!(
" {} [label=\"{}\", fillcolor=red, style=filled, shape=rectangle, fontcolor=white]",
idx.index(),
node.to_graphviz().replace('\"', "\\\"")
)
} else {
format!(
" {} [label=\"{}\", shape=rectangle]",
idx.index(),
node.to_graphviz().replace('\"', "\\\"")
)
}
})
.join("\n");
let edges = self
.graph
.edge_references()
.map(|edge| {
let idx = edge.id();
let edge_content = self.graph.edge_weight(idx).unwrap().borrow().unwrap();
format!(
" {} -> {} [label=\"{}\"]",
self.graph.to_index(edge.source()),
self.graph.to_index(edge.target()),
edge_content.to_string().replace('\"', "\\\"")
)
})
.join("\n");
format!("digraph {{\n{nodes}\n{edges}\n}}")
}
}