1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
mod error;
mod formatters;
mod guard;
mod transformers;

pub(crate) use error::*;
use psl::datamodel_connector::{ConnectorCapabilities, ConnectorCapability};

use crate::{
    interpreter::ExpressionResult, FilteredQuery, ManyRecordsQuery, Query, QueryGraphBuilderResult, QueryOptions,
    ReadQuery,
};
use guard::*;
use itertools::Itertools;
use petgraph::{
    graph::*,
    visit::{EdgeRef as PEdgeRef, NodeIndexable},
    *,
};
use query_structure::{FieldSelection, IntoFilter, QueryArguments, SelectionResult};
use std::{collections::HashSet, fmt};

pub type QueryGraphResult<T> = std::result::Result<T, QueryGraphError>;

#[allow(clippy::large_enum_variant)]
pub(crate) enum Node {
    /// Nodes representing actual queries to the underlying connector.
    Query(Query),

    /// Flow control nodes.
    Flow(Flow),

    // Todo this strongly indicates that the query graph has to change, probably towards a true AST for the interpretation,
    // instead of this unsatisfying in-between of high-level abstraction over the incoming query and concrete interpreter actions.
    /// A general computation to perform. As opposed to `Query`, this doesn't invoke the connector.
    Computation(Computation),

    /// Empty node.
    Empty,
}

impl Node {
    pub(crate) fn as_query(&self) -> Option<&Query> {
        if let Self::Query(v) = self {
            Some(v)
        } else {
            None
        }
    }

    pub(crate) fn as_query_mut(&mut self) -> Option<&mut Query> {
        if let Self::Query(v) = self {
            Some(v)
        } else {
            None
        }
    }
}

impl From<Query> for Node {
    fn from(q: Query) -> Node {
        Node::Query(q)
    }
}

impl From<Flow> for Node {
    fn from(f: Flow) -> Node {
        Node::Flow(f)
    }
}

pub enum Flow {
    /// Expresses a conditional control flow in the graph.
    /// Possible outgoing edges are `then` and `else`, each at most once, with `then` required to be present.
    If(Box<dyn FnOnce() -> bool + Send + Sync + 'static>),

    /// Returns a fixed set of results at runtime.
    Return(Option<Vec<SelectionResult>>),
}

impl Flow {
    pub fn default_if() -> Self {
        Self::If(Box::new(|| true))
    }
}

// Current limitation: We need to narrow it down to ID diffs for Hash and EQ.
pub(crate) enum Computation {
    Diff(DiffNode),
}

impl Computation {
    pub fn empty_diff() -> Self {
        Self::Diff(DiffNode {
            left: HashSet::new(),
            right: HashSet::new(),
        })
    }
}

pub struct DiffNode {
    pub left: HashSet<SelectionResult>,
    pub right: HashSet<SelectionResult>,
}

#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
pub struct NodeRef {
    node_ix: NodeIndex,
}

impl NodeRef {
    /// Returns the unique identifier of the Node.
    pub fn id(&self) -> String {
        self.node_ix.index().to_string()
    }
}

#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct EdgeRef {
    edge_ix: EdgeIndex,
}

impl EdgeRef {
    /// Returns the unique identifier of the Edge.
    pub fn id(&self) -> String {
        self.edge_ix.index().to_string()
    }
}

pub(crate) type ProjectedDataDependencyFn =
    Box<dyn FnOnce(Node, Vec<SelectionResult>) -> QueryGraphBuilderResult<Node> + Send + Sync + 'static>;

pub(crate) type DataDependencyFn =
    Box<dyn FnOnce(Node, &ExpressionResult) -> QueryGraphBuilderResult<Node> + Send + Sync + 'static>;

/// Stored on the edges of the QueryGraph, a QueryGraphDependency contains information on how children are connected to their parents,
/// expressing for example the need for additional information from the parent to be able to execute at runtime.
pub(crate) enum QueryGraphDependency {
    /// Simple dependency indicating order of execution. Effectively an ordering and reachability tool for now.
    ExecutionOrder,

    /// Performs a transformation on the target node based on the source node result..
    DataDependency(DataDependencyFn),

    /// More specialized version of `DataDependency` with more guarantees and side effects.
    ///
    /// Performs a transformation on the target node based on the requested selection on the source result (represented as a single merged `FieldSelection`).
    /// Assumes that the source result can be converted into the requested selection, else a runtime error will occur.
    /// The `FieldSelection` is used to determine the set of values to extract from the source result.
    ///
    /// Important note: As opposed to `DataDependency`, this dependency guarantees that if the closure is called, the source result contains at least the requested selection.
    /// To achieve that, the query graph is post-processed in the `finalize` and reloads are injected at points where a selection is not fulfilled.
    /// See `insert_reloads` for more information.
    ProjectedDataDependency(FieldSelection, ProjectedDataDependencyFn), // [Composites] todo rename

    /// Only valid in the context of a `If` control flow node.
    Then,

    /// Only valid in the context of a `If` control flow node.
    Else,
}

/// A graph representing an abstract view of queries and their execution dependencies.
///
/// Graph invariants (TODO put checks into the code?):
/// - Directed, acyclic.
///
/// - Node IDs are unique and stable.
///
/// - The graph may have multiple result nodes, and multiple paths in the graph may point to result nodes, but only one result is serialized.
///   Note: The exact rules determining the final result are subject of the graph translation.
///
/// - Currently, Nodes are allowed to have multiple parents, but the following invariant applies: They may only refer to their parent and / or one of its ancestors.
///   Note: This rule guarantees that the dependent ancestor node result is always in scope for fulfillment of dependencies.
///
/// - Following the above, sibling dependencies are disallowed as well.
///
/// - Edges are ordered.
///   Node: Their evaluation is performed from low to high ordering, unless other rules require reshuffling the edges during translation.
#[derive(Default)]
pub struct QueryGraph {
    graph: InnerGraph,

    /// Designates the nodes that are returning the result of the entire QueryGraph.
    /// If no nodes are set, the interpretation will take the result of the
    /// last statement derived from the graph.
    result_nodes: Vec<NodeIndex>,

    /// Pairs of nodes marked for parent child swap.
    /// The first `NodeRef` of the tuple is the parent, the second one the child.
    /// The child will become the parents new parent when the graph is finalized.
    /// More docs can be found on `swap_marked`.
    marked_node_pairs: Vec<(NodeRef, NodeRef)>,

    finalized: bool,

    /// For now a stupid marker if the query graph needs to be run inside a
    /// transaction. Should happen if any of the queries is writing data.
    needs_transaction: bool,

    /// Already visited nodes.
    /// Nodes are visited during query graph processing.
    /// Influences traversal rules and how child nodes are treated.
    visited: Vec<NodeIndex>,
}

impl fmt::Debug for QueryGraph {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("QueryGraph")
            .field("graph", &"InnerGraph")
            .field("result_nodes", &self.result_nodes)
            .field("marked_node_pairs", &self.marked_node_pairs)
            .field("finalized", &self.finalized)
            .field("needs_transaction", &self.needs_transaction)
            .field("visited", &self.visited)
            .finish()
    }
}

/// Implementation detail of the QueryGraph.
type InnerGraph = Graph<Guard<Node>, Guard<QueryGraphDependency>>;

impl QueryGraph {
    pub fn new() -> Self {
        Self {
            graph: InnerGraph::new(),
            ..Default::default()
        }
    }

    pub(crate) fn root<F>(f: F) -> QueryGraphBuilderResult<QueryGraph>
    where
        F: FnOnce(&mut QueryGraph) -> QueryGraphBuilderResult<()>,
    {
        let mut graph = QueryGraph::new();
        f(&mut graph)?;
        Ok(graph)
    }

    pub fn finalize(&mut self, capabilities: ConnectorCapabilities) -> QueryGraphResult<()> {
        if !self.finalized {
            self.swap_marked()?;
            self.ensure_return_nodes_have_parent_dependency()?;
            self.normalize_data_dependencies(capabilities)?;
            self.insert_reloads()?;
            self.normalize_if_nodes()?;
            self.finalized = true;
        }

        Ok(())
    }

    pub fn result_nodes(&self) -> Vec<NodeRef> {
        self.result_nodes
            .iter()
            .map(|node_ix| NodeRef { node_ix: *node_ix })
            .collect()
    }

    /// Adds a result node to the graph.
    pub fn add_result_node(&mut self, node: &NodeRef) {
        self.result_nodes.push(node.node_ix);
    }

    pub fn mark_visited(&mut self, node: &NodeRef) {
        if !self.visited.contains(&node.node_ix) {
            trace!("Visited: {}", node.id());
            self.visited.push(node.node_ix);
        }
    }

    /// Checks if the given node is marked as one of the result nodes in the graph.
    pub fn is_result_node(&self, node: &NodeRef) -> bool {
        self.result_nodes.iter().any(|rn| rn.index() == node.node_ix.index())
    }

    /// Checks if the subgraph starting at the given node contains the node designated as the overall result.
    pub fn subgraph_contains_result(&self, node: &NodeRef) -> bool {
        if self.is_result_node(node) {
            true
        } else {
            self.outgoing_edges(node).into_iter().any(|edge| {
                let child_node = self.edge_target(&edge);
                self.subgraph_contains_result(&child_node)
            })
        }
    }

    /// Returns all root nodes of the graph.
    /// A root node is defined by having no incoming edges.
    pub fn root_nodes(&self) -> Vec<NodeRef> {
        self.graph
            .node_indices()
            .filter_map(|node_ix| {
                if self.graph.edges_directed(node_ix, Direction::Incoming).next().is_some() {
                    None
                } else {
                    Some(NodeRef { node_ix })
                }
            })
            .collect()
    }

    /// Creates a node with content `t` and adds it to the graph.
    /// Returns a `NodeRef` to the newly added node.
    pub(crate) fn create_node<T>(&mut self, t: T) -> NodeRef
    where
        T: Into<Node>,
    {
        let node_ix = self.graph.add_node(Guard::new(t.into()));

        NodeRef { node_ix }
    }

    /// Creates an edge with given `content`, originating from node `from` and pointing to node `to`.
    /// Checks are run after edge creation to ensure validity of the query graph.
    /// Returns an `EdgeRef` to the newly added edge.
    /// Todo currently panics, change interface to result type.
    pub(crate) fn create_edge(
        &mut self,
        from: &NodeRef,
        to: &NodeRef,
        content: QueryGraphDependency,
    ) -> QueryGraphResult<EdgeRef> {
        let edge_ix = self.graph.add_edge(from.node_ix, to.node_ix, Guard::new(content));
        let edge = EdgeRef { edge_ix };

        Ok(edge)
    }

    /// Mark the query graph to need a transaction.
    pub(crate) fn flag_transactional(&mut self) {
        self.needs_transaction = true;
    }

    /// If true, the graph should be executed inside of a transaction.
    pub(crate) fn needs_transaction(&self) -> bool {
        self.needs_transaction
    }

    /// Returns a reference to the content of `node`, if the content is still present.
    pub(crate) fn node_content(&self, node: &NodeRef) -> Option<&Node> {
        self.graph.node_weight(node.node_ix).unwrap().borrow()
    }

    /// Returns a reference to the content of `node`, if the content is still present.
    pub(crate) fn node_content_mut(&mut self, node: &NodeRef) -> Option<&mut Node> {
        self.graph.node_weight_mut(node.node_ix).unwrap().borrow_mut()
    }

    /// Returns a reference to the content of `edge`, if the content is still present.
    pub(crate) fn edge_content(&self, edge: &EdgeRef) -> Option<&QueryGraphDependency> {
        self.graph.edge_weight(edge.edge_ix).unwrap().borrow()
    }

    /// Returns the node from where `edge` originates (e.g. source).
    pub(crate) fn edge_source(&self, edge: &EdgeRef) -> NodeRef {
        let (node_ix, _) = self.graph.edge_endpoints(edge.edge_ix).unwrap();
        NodeRef { node_ix }
    }

    /// Returns the node to which `edge` points (e.g. target).
    pub(crate) fn edge_target(&self, edge: &EdgeRef) -> NodeRef {
        let (_, node_ix) = self.graph.edge_endpoints(edge.edge_ix).unwrap();
        NodeRef { node_ix }
    }

    /// Returns all edges originating from= `node` (e.g. outgoing edges).
    pub fn outgoing_edges(&self, node: &NodeRef) -> Vec<EdgeRef> {
        self.collect_edges(node, Direction::Outgoing)
    }

    /// Returns all edges pointing to `node` (e.g. incoming edges).
    pub fn incoming_edges(&self, node: &NodeRef) -> Vec<EdgeRef> {
        self.collect_edges(node, Direction::Incoming)
    }

    /// Removes the edge from the graph but leaves the graph intact by keeping the empty
    /// edge in the graph by plucking the content of the edge, but not the edge itself.
    pub(crate) fn pluck_edge(&mut self, edge: &EdgeRef) -> QueryGraphDependency {
        self.graph.edge_weight_mut(edge.edge_ix).unwrap().unset()
    }

    /// Removes the node from the graph but leaves the graph intact by keeping the empty
    /// node in the graph by plucking the content of the node, but not the node itself.
    pub(crate) fn pluck_node(&mut self, node: &NodeRef) -> Node {
        self.graph.node_weight_mut(node.node_ix).unwrap().unset()
    }

    /// Completely removes the edge from the graph, returning it's content.
    /// This operation is destructive on the underlying graph and invalidates references.
    pub(crate) fn remove_edge(&mut self, edge: EdgeRef) -> Option<QueryGraphDependency> {
        self.graph.remove_edge(edge.edge_ix).unwrap().into_inner()
    }

    /// Checks if `child` is a direct child of `parent`.
    ///
    /// Criteria for a direct child (either):
    /// - Every node that only has `parent` as their parent.
    /// - In case of multiple parents, _all_ parents have already been visited before.
    pub fn is_direct_child(&self, parent: &NodeRef, child: &NodeRef) -> bool {
        self.incoming_edges(child).into_iter().all(|edge| {
            let other_parent = self.edge_source(&edge);

            if &other_parent != parent {
                self.visited.contains(&other_parent.node_ix)
            } else {
                true
            }
        })
    }

    /// Returns a list of child nodes, together with their child edge for the given `node`.
    /// The list contains all children reachable by outgoing edges of `node`.
    pub fn child_pairs(&self, node: &NodeRef) -> Vec<(EdgeRef, NodeRef)> {
        self.outgoing_edges(node)
            .into_iter()
            .map(|edge| {
                let target = self.edge_target(&edge);
                (edge, target)
            })
            .collect()
    }

    /// Returns all direct child pairs of `node`.
    /// See `is_direct_child` for exact definition of what a direct child encompasses.
    pub fn direct_child_pairs(&self, node: &NodeRef) -> Vec<(EdgeRef, NodeRef)> {
        self.outgoing_edges(node)
            .into_iter()
            .filter_map(|edge| {
                let child_node = self.edge_target(&edge);

                if self.is_direct_child(node, &child_node) {
                    Some((edge, child_node))
                } else {
                    None
                }
            })
            .collect()
    }

    /// Internal utility function to collect all edges of defined direction directed to, or originating from, `node`.
    fn collect_edges(&self, node: &NodeRef, direction: Direction) -> Vec<EdgeRef> {
        let mut edges = self
            .graph
            .edges_directed(node.node_ix, direction)
            .map(|edge| EdgeRef { edge_ix: edge.id() })
            .collect::<Vec<_>>();

        edges.sort();
        edges
    }

    /// Marks a node pair for swapping.
    pub fn mark_nodes(&mut self, parent_node: &NodeRef, child_node: &NodeRef) {
        self.marked_node_pairs.push((*parent_node, *child_node));
    }

    /// Swaps all marked parent-child pairs.
    ///
    /// With this function, given a tuple of `(parent, child)`, `child` will be a parent node of `parent` after the swap has been performed.
    ///
    /// This operation preserves all edges from the parents of `parent` to the node, while inserting new edges from all parents of
    /// `parent` to `child`, effectively "pushing the child in the middle" of `parent` and it's parents. The new edges are only expressing
    /// exection order, and no node transformation.
    ///
    /// Any edge existing between `parent` and `child` will change direction and will point from `child` to `parent` instead.
    ///
    /// **Important exception**: If a parent node is a `Flow` node, we need to completely remove the edge to the flow node and rewire it to the child.
    ///
    /// ## Example transformation
    /// Given the marked pairs `[(A, B), (B, C), (B, D)]` and a graph (depicting the state before the transformation):
    /// ```text
    ///      ┌───┐
    ///      │ P │
    ///      └───┘
    ///        │
    ///        ▼
    ///      ┌───┐
    ///      │ A │
    ///      └───┘
    ///        │
    ///        ▼
    ///      ┌───┐
    ///   ┌──│ B │──┐
    ///   │  └───┘  │
    ///   │         │
    ///   ▼         ▼
    /// ┌───┐     ┌───┐
    /// │ C │     │ D │
    /// └───┘     └───┘
    /// ```
    ///
    /// The marked pairs express that the operations performed by the contained parents depend on the child operation,
    /// hence making it necessary to execute the child operation first.
    ///
    /// Applying the transformations step by step will change the graph as following:
    /// (new edges created in a transformation step are marked with *)
    /// ```text
    ///         ┌───┐                 ┌───┐                                 ┌───┐                         ┌───┐
    ///         │ P │                 │ P │────────────────┐             ┌──│ P │──────────┐           ┌──│ P │────────┐
    ///         └───┘                 └───┘               1│             │  └───┘         1│           │  └───┘       1│
    ///          1│                     │                  │            5│    │ 6*         │          5│   6│          │
    ///           ▼                     │                  │             │    ▼            │           │    ▼          │
    ///         ┌───┐                   │                  │             │  ┌───┐          │           │  ┌───┐  7*    │
    ///         │ A │                 5*│                  │             │  │ C │          │           │  │ C │───┐    │
    ///         └───┘     ═(A, B)═▶     │                  │ ═(B, C)═▶   │  └───┘          │ ═(B, D)═▶ │  └───┘   │    │
    ///          2│                     │                  │             │   3│            │           │   3│     │    │
    ///           ▼                     ▼                  │             │    ▼            │           │    │     ▼    │
    ///         ┌───┐                 ┌───┐                │             │  ┌───┐          │           │    │   ┌───┐  │
    ///      ┌──│ B │──┐           ┌──│ B │──┬────────┐    │             └─▶│ B │─────┐    │           │    │   │ D │  │
    ///     3│  └───┘ 4│          3│  └───┘ 4│       2│    │                └───┘     │    │           │    │   └───┘  │
    ///      │         │           │         │        │    │                 4│      2│    │           │    │    4│    │
    ///      ▼         ▼           ▼         ▼        ▼    │                  ▼       ▼    │           │    ▼     │    │
    ///    ┌───┐     ┌───┐       ┌───┐     ┌───┐    ┌───┐  │                ┌───┐   ┌───┐  │           │  ┌───┐   │    │
    ///    │ C │     │ D │       │ C │     │ D │    │ A │◀─┘                │ D │   │ A │◀─┘           └─▶│ B │◀──┘    │
    ///    └───┘     └───┘       └───┘     └───┘    └───┘                   └───┘   └───┘                 └───┘        │
    ///                                                                                                     │          │
    ///                                                                                                     │          │
    ///                                                                                                    2│   ┌───┐  │
    ///                                                                                                     └──▶│ A │◀─┘
    ///                                                                                                         └───┘
    /// ```
    /// [DTODO] put if flow exception illustration here.
    fn swap_marked(&mut self) -> QueryGraphResult<()> {
        if !self.marked_node_pairs.is_empty() {
            trace!("[Graph][Swap] Before shape: {}", self);
        }

        let mut marked = std::mem::take(&mut self.marked_node_pairs);
        marked.reverse(); // Todo: Marked operation order is currently breaking if done bottom-up. Investigate how to fix it.

        for (parent_node, child_node) in marked {
            // All parents of `parent_node` are becoming a parent of `child_node` as well, except flow nodes.
            let parent_edges = self.incoming_edges(&parent_node);
            for parent_edge in parent_edges {
                let parent_of_parent_node = self.edge_source(&parent_edge);

                match self
                    .node_content(&parent_of_parent_node)
                    .expect("Expected marked nodes to be non-empty.")
                {
                    // Exception rule: Only swap `Then` and `Else` edges.
                    Node::Flow(Flow::If(_)) => {
                        if matches!(
                            self.edge_content(&parent_edge),
                            Some(QueryGraphDependency::Then) | Some(QueryGraphDependency::Else)
                        ) {
                            let content = self
                                .remove_edge(parent_edge)
                                .expect("Expected edges between marked nodes to be non-empty.");

                            self.create_edge(&parent_of_parent_node, &child_node, content)?;
                        }
                    }

                    _ => {
                        trace!(
                            "[Graph][Swap] Connecting parent of parent {} with child {}",
                            parent_of_parent_node.id(),
                            child_node.id()
                        );

                        self.create_edge(
                            &parent_of_parent_node,
                            &child_node,
                            QueryGraphDependency::ExecutionOrder,
                        )?;
                    }
                }
            }

            // Find existing edge between parent and child. Can only be one at most.
            let existing_edge = self
                .graph
                .find_edge(parent_node.node_ix, child_node.node_ix)
                .map(|edge_ix| EdgeRef { edge_ix });

            // Remove edge and reinsert edge in reverse.
            if let Some(edge) = existing_edge {
                let content = self.pluck_edge(&edge);
                self.create_edge(&child_node, &parent_node, content)?;
                self.remove_edge(edge);
            }
        }

        Ok(())
    }

    /// Inserts ordering edges into the graph to prevent interdependency issues when rotating
    /// nodes for `if`-flow nodes.
    ///
    /// All sibling nodes of an if-node that are...
    /// - ... not an `if`-flow node themself
    /// - ... not already connected to the current `if`-flow node in any form (to prevent double edges)
    /// - ... not connected to another `if`-flow node with control flow edges (indirect sibling)
    /// will be ordered below the currently processed `if`-flow node in execution predence.
    ///
    /// ```text
    ///      ┌ ─ ─ ─ ─ ─ ─
    /// ┌ ─ ─    Parent   │─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─
    ///      └ ─ ─ ─ ─ ─ ─                        │                       │
    /// │           │              │                             │
    ///             │                             │                       │
    /// │           │              │                             │
    ///             ▼              ▼              ▼              ▼        │
    /// │    ┌ ─ ─ ─ ─ ─ ─  ┌ ─ ─ ─ ─ ─ ─  ┌ ─ ─ ─ ─ ─ ─  ┌ ─ ─ ─ ─ ─ ─
    ///   ┌ ─      If     │    Sibling   │   Sibling If │   Sibling If │  │
    /// │    └ ─ ─ ─ ─ ─ ─  └ ─ ─ ─ ─ ─ ─  └ ─ ─ ─ ─ ─ ─  └ ─ ─ ─ ─ ─ ─
    ///   │         │              ▲                             │        │
    /// │           │              │
    ///   │         └────Inserted ─┘                       (Then / Else)  │
    /// │                Ordering
    ///   │                                                      ▼        │
    /// │    ┌ ─ ─ ─ ─ ─ ─                                ┌ ─ ─ ─ ─ ─ ─
    ///   │     Already   │                                  Indirect  │  │
    /// └ ──▶│ connected                                  │  sibling    ◀─
    ///         sibling   │                                ─ ─ ─ ─ ─ ─ ┘
    ///      └ ─ ─ ─ ─ ─ ─
    /// ```
    fn normalize_if_nodes(&mut self) -> QueryGraphResult<()> {
        for node_ix in self.graph.node_indices() {
            let node = NodeRef { node_ix };

            if let Node::Flow(Flow::If(_)) = self.node_content(&node).unwrap() {
                let parents = self.incoming_edges(&node);

                for parent_edge in parents {
                    let parent = self.edge_source(&parent_edge);
                    let siblings = self.child_pairs(&parent);

                    for (_, sibling) in siblings {
                        let possible_edge = self.graph.find_edge(node.node_ix, sibling.node_ix);
                        let is_if_node_child = self.incoming_edges(&sibling).into_iter().any(|edge| {
                            let content = self.edge_content(&edge).unwrap();
                            matches!(content, QueryGraphDependency::Then | QueryGraphDependency::Else)
                        });

                        if sibling != node
                            && possible_edge.is_none()
                            && !is_if_node_child
                            && !matches!(self.node_content(&sibling).unwrap(), Node::Flow(_))
                        {
                            self.create_edge(&node, &sibling, QueryGraphDependency::ExecutionOrder)?;
                        }
                    }
                }
            }
        }

        Ok(())
    }

    /// Traverses the graph and ensures that return nodes have correct `ProjectedDataDependency`s on their incoming edges.
    ///
    /// Steps:
    /// - Collect & merge the outgoing edge dependencies into a single `FieldSelection`
    /// - Transform the incoming edge dependencies of the return nodes with the merged outgoing edge dependencies of the previous step
    ///
    /// This ensures that children nodes of return nodes have the proper data dependencies at their disposal.
    /// In case the parent nodes of return nodes do not have a field selection that fullfils the new dependency,
    /// a reload node will be inserted in between the parent and the return node by the `insert_reloads` method.
    fn ensure_return_nodes_have_parent_dependency(&mut self) -> QueryGraphResult<()> {
        let return_nodes: Vec<NodeRef> = self
            .graph
            .node_indices()
            .filter_map(|ix| {
                let node = NodeRef { node_ix: ix };

                match self.node_content(&node).unwrap() {
                    Node::Flow(Flow::Return(_)) => Some(node),
                    _ => None,
                }
            })
            .collect();

        for return_node in return_nodes {
            let out_edges = self.outgoing_edges(&return_node);
            let dependencies: Vec<FieldSelection> = out_edges
                .into_iter()
                .filter_map(|edge| match self.edge_content(&edge).unwrap() {
                    QueryGraphDependency::ProjectedDataDependency(ref requested_selection, _) => {
                        Some(requested_selection.clone())
                    }
                    _ => None,
                })
                .collect();
            let dependencies = FieldSelection::union(dependencies);

            // Assumption: We currently always have at most one single incoming ProjectedDataDependency edge
            // connected to return nodes. This will break if we ever have more.
            let in_edges = self.incoming_edges(&return_node);
            let incoming_dep_edge = in_edges.into_iter().find(|edge| {
                matches!(
                    self.edge_content(edge),
                    Some(QueryGraphDependency::ProjectedDataDependency(_, _))
                )
            });

            if let Some(incoming_edge) = incoming_dep_edge {
                let source = self.edge_source(&incoming_edge);
                let target = self.edge_target(&incoming_edge);
                let content = self
                    .remove_edge(incoming_edge)
                    .expect("Expected edges between marked nodes to be non-empty.");

                if let QueryGraphDependency::ProjectedDataDependency(existing, transformer) = content {
                    let merged_dependencies = dependencies.merge(existing);

                    self.create_edge(
                        &source,
                        &target,
                        QueryGraphDependency::ProjectedDataDependency(merged_dependencies, transformer),
                    )?;
                }
            }
        }

        Ok(())
    }

    /// Traverses the query graph and checks if reloads of nodes are necessary.
    /// Whether or not a node needs to be reloaded is determined based on the
    /// incoming `ProjectedDataDependency` edge transformers, as those hold the `FieldSelection`s
    /// all records of the source result need to contain in order to satisfy dependencies.
    ///
    /// If a node needs to be reloaded, ALL edges going out from the reloaded node need to be rewired, not
    /// only unsatified ones.
    ///
    /// ## Example
    /// Given a query graph, where 3 children require different set of fields ((A, B), (B, C), (A, D))
    /// to execute their dependent operations:
    /// ```text
    /// ┌ ─ ─ ─ ─ ─ ─
    ///     Parent   │─────────┬───────────────┐
    /// └ ─ ─ ─ ─ ─ ─          │               │
    ///        │               │               │
    ///     (A, B)          (B, C)           (A, D)
    ///        │               │               │
    ///        ▼               ▼               ▼
    /// ┌ ─ ─ ─ ─ ─ ─   ┌ ─ ─ ─ ─ ─ ─   ┌ ─ ─ ─ ─ ─ ─
    ///    Child A   │     Child B   │     Child C   │
    /// └ ─ ─ ─ ─ ─ ─   └ ─ ─ ─ ─ ─ ─   └ ─ ─ ─ ─ ─ ─
    /// ```
    /// However, `Parent` only returns `(A, B)`, for example, because that's the primary ID of the parent model
    /// and `Parent` is an operation that only returns IDs (e.g. update, updateMany).
    ///
    /// In order to satisfy children B and C, the graph is altered by this post-processing call:
    /// ```text
    /// ┌ ─ ─ ─ ─ ─ ─
    ///     Parent   │
    /// └ ─ ─ ─ ─ ─ ─
    ///        │
    ///     (A, B) (== Primary ID)
    ///        │
    ///        ▼
    /// ┌────────────┐
    /// │   Reload   │─────────┬───────────────┐
    /// └────────────┘         │               │
    ///        │               │               │
    ///     (A, B)          (B, C)           (A, D)
    ///        │               │               │
    ///        ▼               ▼               ▼
    /// ┌ ─ ─ ─ ─ ─ ─   ┌ ─ ─ ─ ─ ─ ─   ┌ ─ ─ ─ ─ ─ ─
    ///    Child A   │     Child B   │     Child C   │
    /// └ ─ ─ ─ ─ ─ ─   └ ─ ─ ─ ─ ─ ─   └ ─ ─ ─ ─ ─ ─
    /// ```
    ///
    /// The edges from `Parent` to all dependent children are removed from the graph and reinserted in order
    /// on the reload node.
    ///
    /// The `Reload` node is always a "find many" query.
    /// Unwraps are safe because we're operating on the unprocessed state of the graph (`Expressionista` changes that).
    fn insert_reloads(&mut self) -> QueryGraphResult<()> {
        let reloads = self.find_unsatisfied_dependencies();

        for (node, identifiers) in reloads {
            let query = self.node_content(&node).and_then(|node| node.as_query()).unwrap();

            trace!(
                "Query {:?} does not return requested selection {:?} and will be reloaded.",
                query,
                identifiers.prisma_names().collect::<Vec<_>>()
            );

            // Create reload node and connect it to the `node`.
            let model = query.model();
            let primary_model_id = model.primary_identifier();

            let read_query = ReadQuery::ManyRecordsQuery(ManyRecordsQuery {
                name: "reload".into(),
                alias: None,
                model: model.clone(),
                args: QueryArguments::new(model),
                selected_fields: identifiers.merge(primary_model_id.clone()),
                nested: vec![],
                selection_order: vec![],
                options: QueryOptions::none(),
                relation_load_strategy: query_structure::RelationLoadStrategy::Query,
            });

            let reload_query = Query::Read(read_query);
            let reload_node = self.create_node(reload_query);

            self.create_edge(
                &node,
                &reload_node,
                QueryGraphDependency::ProjectedDataDependency(
                    primary_model_id,
                    Box::new(|mut reload_node, parent_result| {
                        if let Node::Query(Query::Read(ReadQuery::ManyRecordsQuery(ref mut mr))) = reload_node {
                            mr.set_filter(parent_result.filter());
                        }

                        Ok(reload_node)
                    }),
                ),
            )?;

            // Remove all edges from node to children, reattach them to the reload node
            for edge in self.outgoing_edges(&node) {
                let target = self.edge_target(&edge);
                let content = self.remove_edge(edge).unwrap();

                self.create_edge(&reload_node, &target, content)?;
            }
        }

        Ok(())
    }

    /// Traverses the query graph and finds the nodes that need their selection set to be updated so that they fulfill the data dependencies of their children.
    /// We determine that based on incoming `ProjectedDataDependency` edge transformers, as those hold the `FieldSelection`s
    /// that all records of the source result need to contain in order to satisfy dependencies.
    ///
    /// ## Example
    /// Given a query graph, where 3 children require different set of fields ((A, B), (B, C), (A, D))
    /// to execute their dependent operations:
    /// ```text
    /// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─
    ///     Parent (A, B)  │─────────┬───────────────┐
    /// └ ─ ─ ─ ─ ─ ─  ─ ─           │               │
    ///        │                     │               │
    ///     (A, B)                (B, C)           (A, D)
    ///        │                    │               │
    ///        ▼                    ▼               ▼
    /// ┌ ─ ─ ─ ─ ─ ─          ┌ ─ ─ ─ ─ ─ ─   ┌ ─ ─ ─ ─ ─ ─
    ///    Child A   │         |  Child B   │  |  Child C   │
    /// └ ─ ─ ─ ─ ─ ─          └ ─ ─ ─ ─ ─ ─   └ ─ ─ ─ ─ ─ ─
    /// ```
    /// However, `Parent` only returns `(A, B)`, for example, because that's the primary ID of the parent model.
    ///
    /// In order to satisfy children B and C, the graph is altered by this post-processing call:
    /// ```text
    /// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─
    ///     Parent (A, B, C, D)  │─────────┬───────────────┐
    /// └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─          │               │
    ///        │                           │               │
    ///     (A, B)                       (B, C)           (A, D)
    ///        │                           │               │
    ///        ▼                           ▼               ▼
    /// ┌ ─ ─ ─ ─ ─ ─               ┌ ─ ─ ─ ─ ─ ┐   ┌ ─ ─ ─ ─ ─ ┐
    ///    Child A   │              |  Child B  │   |  Child C  │
    /// └ ─ ─ ─ ─ ─ ─               └ ─ ─ ─ ── -    └ ─ ─ ─ ── ─
    /// ```
    /// Note that not all connectors can have their nodes' field selection updated.
    /// This is only possible when the parent node _can_ fulfill the selection set.
    /// In the case of updates and inserts, for instance, only connectors supporting `InsertReturning` and `UpdateReturning` can do it,
    /// or else they're only able to return the primary identifier of the model inserted or updated.
    fn normalize_data_dependencies(&mut self, capabilities: ConnectorCapabilities) -> QueryGraphResult<()> {
        let unsatisfied_deps = self.find_unsatisfied_dependencies();

        for (node, identifiers) in unsatisfied_deps {
            let query = self
                .node_content_mut(&node)
                .and_then(|node| node.as_query_mut())
                .unwrap();

            // If the connector does not support returning more than the primary identifier for an update,
            // do not update the selection set.
            if query.is_update_one() && !capabilities.contains(ConnectorCapability::UpdateReturning) {
                continue;
            }

            // If the connector does not support returning more than the primary identifier for a create,
            // do not update the selection set.
            if query.is_create_one() && !capabilities.contains(ConnectorCapability::InsertReturning) {
                continue;
            }

            // If the connector does not support returning more than the primary identifier for a delete,
            // do not update the selection set.
            if query.is_delete_one() && !capabilities.contains(ConnectorCapability::DeleteReturning) {
                continue;
            }

            trace!(
                "Query {:?} does not return requested selection {:?} and will be updated.",
                query,
                identifiers.prisma_names().collect::<Vec<_>>()
            );

            query.satisfy_dependency(identifiers);
        }

        Ok(())
    }

    /// Traverses the query graph and finds the query nodes that don't fulfill their children data dependencies.
    /// We determine that based on incoming `ProjectedDataDependency` edge transformers, as those hold the `FieldSelection`s
    /// that all records of the source result need to contain in order to satisfy dependencies.
    fn find_unsatisfied_dependencies(&self) -> Vec<(NodeRef, FieldSelection)> {
        self.graph
            .node_indices()
            .filter_map(|ix| {
                let node = NodeRef { node_ix: ix };

                if let Node::Query(q) = self.node_content(&node).unwrap() {
                    let edges = self.outgoing_edges(&node);
                    let unsatisfied_dependencies: Vec<_> = edges
                        .into_iter()
                        .filter_map(|edge| match self.edge_content(&edge).unwrap() {
                            QueryGraphDependency::ProjectedDataDependency(ref requested_selection, _)
                                if !q.satisfies(requested_selection) =>
                            {
                                Some(requested_selection.clone())
                            }
                            _ => None,
                        })
                        .collect();

                    if unsatisfied_dependencies.is_empty() {
                        None
                    } else {
                        Some((node, FieldSelection::union(unsatisfied_dependencies)))
                    }
                } else {
                    None
                }
            })
            .collect()
    }
}

pub trait ToGraphviz {
    fn to_graphviz(&self) -> String;
}

impl ToGraphviz for QueryGraph {
    fn to_graphviz(&self) -> String {
        let nodes = self
            .graph
            .node_indices()
            .map(|idx| (idx, self.graph.node_weight(idx).unwrap().borrow().unwrap()))
            .map(|(idx, node)| {
                if self.is_result_node(&NodeRef { node_ix: idx }) {
                    format!(
                        "    {} [label=\"{}\", fillcolor=blue, style=filled, shape=rectangle, fontcolor=white]",
                        idx.index(),
                        node.to_graphviz().replace('\"', "\\\"")
                    )
                } else if self
                    .root_nodes()
                    .iter()
                    .any(|root_node| root_node == &NodeRef { node_ix: idx })
                {
                    format!(
                        "    {} [label=\"{}\", fillcolor=red, style=filled, shape=rectangle, fontcolor=white]",
                        idx.index(),
                        node.to_graphviz().replace('\"', "\\\"")
                    )
                } else {
                    format!(
                        "    {} [label=\"{}\", shape=rectangle]",
                        idx.index(),
                        node.to_graphviz().replace('\"', "\\\"")
                    )
                }
            })
            .join("\n");

        let edges = self
            .graph
            .edge_references()
            .map(|edge| {
                let idx = edge.id();
                let edge_content = self.graph.edge_weight(idx).unwrap().borrow().unwrap();

                format!(
                    "    {} -> {} [label=\"{}\"]",
                    self.graph.to_index(edge.source()),
                    self.graph.to_index(edge.target()),
                    edge_content.to_string().replace('\"', "\\\"")
                )
            })
            .join("\n");

        format!("digraph {{\n{nodes}\n{edges}\n}}")
    }
}