1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
use crate::filter::MongoFilter;
use mongodb::bson::{doc, Document};
use query_structure::{walkers, RelationFieldRef, ScalarFieldRef};
/// A join stage describes a tree of joins and nested joins to be performed on a collection.
/// Every document of the `source` side will be joined with the collection documents
/// as described by the relation field. All of the newly joined documents
/// can be joined again with relations originating from their collection.
/// Example:
/// ```text
/// A -> B -> C
/// -> D
/// ```
/// Translates to: `JoinStage(A, nested: Vec<JoinStage(B), JoinStage(C)>)`.
#[derive(Debug, Clone)]
pub(crate) struct JoinStage {
/// The starting point of the traversal (left model of the join).
pub(crate) source: RelationFieldRef,
/// By default, the name of the relation is used as join field name.
/// Can be overwritten with an alias here.
pub(crate) alias: Option<String>,
/// Nested joins
pub(crate) nested: Vec<JoinStage>,
/// Filter on the join itself, used for aggregations on relations.
pub(crate) filter: Option<MongoFilter>,
}
impl JoinStage {
pub(crate) fn new(source: RelationFieldRef) -> Self {
Self {
source,
alias: None,
nested: vec![],
filter: None,
}
}
pub(crate) fn set_alias(&mut self, alias: String) {
self.alias = Some(alias);
}
pub(crate) fn push_nested(&mut self, stage: JoinStage) {
self.nested.push(stage);
}
pub(crate) fn extend_nested(&mut self, stages: Vec<JoinStage>) {
self.nested.extend(stages);
}
/// Returns a join stage for the join between the source collection of `from_field` (the model it's defined on)
/// and the target collection (the model that is related over the relation), as well as an optional unwind stage.
/// The joined documents will reside on the source document side as a field **named after the relation name** if
/// there's no `alias` defined. Else the alias is the name.
/// Example: If you have a document `{ _id: 1, field: "a" }` and join relation "aToB", the resulting document
/// will have the shape: `{ _id: 1, field: "a", aToB: [{...}, {...}, ...] }` without alias and
/// `{ _id: 1, field: "a", aliasHere: [{...}, {...}, ...] }` with alias `"aliasHere"`.
///
/// Returns: `(Join document, Unwind document)`
pub(crate) fn build(self) -> (Document, Option<Document>) {
let (filter_doc, filter_joins) = self
.filter
.map(MongoFilter::render)
.map(|(doc, joins)| (Some(doc), joins))
.unwrap_or_else(|| (None, vec![]));
let nested_stages: Vec<Document> = self
.nested
.into_iter()
.chain(filter_joins)
.map(|nested_stage| {
let (join, _) = nested_stage.build();
join
})
.collect();
let from_field = self.source;
let relation = from_field.relation();
let as_name = if let Some(alias) = self.alias {
alias
} else {
relation.name()
};
let right_model = from_field.related_model();
let right_coll_name = right_model.db_name();
// +1 for the required match stage, the rest is from the joins.
let mut pipeline = Vec::with_capacity(1 + nested_stages.len());
// First we start with the right side of the equation
let right_scalars: Vec<ScalarFieldRef> = match from_field.walker().relation().refine() {
walkers::RefinedRelationWalker::Inline(_) | walkers::RefinedRelationWalker::ImplicitManyToMany(_) => {
from_field.related_field().left_scalars()
}
walkers::RefinedRelationWalker::TwoWayEmbeddedManyToMany(_) => from_field.related_field().scalar_fields(),
};
// What $expr operators we will need to express this lookup? (depends on right fields)
let ops: Vec<Document> = right_scalars
.iter()
.enumerate()
.map(|(idx, right_field)| {
let right_ref = format!("${}", right_field.db_name());
let left_var = format!("$$left_{idx}");
match relation.is_many_to_many() {
true if right_field.is_list() => doc! { "$in": [left_var, right_ref] },
true => doc! { "$in": [right_ref, left_var] },
_ => doc! { "$eq": [right_ref, left_var] },
}
})
.collect();
// For m-n join stages: Add an `$addFields` stage that adds an empty array if not present (required to make joins work).
if relation.is_many_to_many() {
// addFields is the list of fields and conditions
let mut add_fields = Document::new();
// Go through every right field to place in the $addFields operator
for right_field in right_scalars.iter() {
let right_name = right_field.db_name();
let right_ref = format!("${right_name}");
add_fields.insert(
right_name,
doc! {
"$cond": {
"if": {
"$ne": [ { "$type": right_ref.clone() }, "array"]
},
"then": [],
"else": right_ref.clone()
}
},
);
}
// Push addFields to pipeline
pipeline.push(doc! {
"$addFields": add_fields
});
}
// We can now express the match from the operators
pipeline.push(doc! { "$match": { "$expr": { "$and": ops } }});
pipeline.extend(nested_stages);
// Add inner join filters if there are any (used for relational aggregations)
if let Some(doc) = filter_doc {
pipeline.push(doc! { "$match": { "$expr": doc } });
}
// If the field is a to-one, add an unwind stage.
let unwind_stage = if !from_field.is_list() {
Some(doc! {
"$unwind": { "path": format!("${as_name}"), "preserveNullAndEmptyArrays": true }
})
} else {
None
};
// Time to deal with the left side of the equation
let left_scalars = from_field.left_scalars();
let mut let_vars = Document::new();
// With the left side, we need to introduce the variable `left_x` pointing to the correct field
for (idx, left_field) in left_scalars.iter().enumerate() {
let left_var = format!("left_{idx}");
let_vars.insert(left_var, format!("${}", left_field.db_name()));
}
// We can now generate the full $lookup query with all its parts
let join_stage = doc! {
"$lookup": {
"from": right_coll_name,
"let": let_vars,
"pipeline": pipeline,
"as": as_name,
}
};
(join_stage, unwind_stage)
}
}