1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
//! Provides the [Engine] abstraction and out of the box implementations.
#[cfg(any(feature = "alloc", feature = "std", test))]
use crate::chunked_encoder;
use crate::{
encode::{encode_with_padding, EncodeSliceError},
encoded_len, DecodeError, DecodeSliceError,
};
#[cfg(any(feature = "alloc", feature = "std", test))]
use alloc::vec::Vec;
#[cfg(any(feature = "alloc", feature = "std", test))]
use alloc::{string::String, vec};
pub mod general_purpose;
#[cfg(test)]
mod naive;
#[cfg(test)]
mod tests;
pub use general_purpose::{GeneralPurpose, GeneralPurposeConfig};
/// An `Engine` provides low-level encoding and decoding operations that all other higher-level parts of the API use. Users of the library will generally not need to implement this.
///
/// Different implementations offer different characteristics. The library currently ships with
/// [GeneralPurpose] that offers good speed and works on any CPU, with more choices
/// coming later, like a constant-time one when side channel resistance is called for, and vendor-specific vectorized ones for more speed.
///
/// See [general_purpose::STANDARD_NO_PAD] if you just want standard base64. Otherwise, when possible, it's
/// recommended to store the engine in a `const` so that references to it won't pose any lifetime
/// issues, and to avoid repeating the cost of engine setup.
///
/// Since almost nobody will need to implement `Engine`, docs for internal methods are hidden.
// When adding an implementation of Engine, include them in the engine test suite:
// - add an implementation of [engine::tests::EngineWrapper]
// - add the implementation to the `all_engines` macro
// All tests run on all engines listed in the macro.
pub trait Engine: Send + Sync {
/// The config type used by this engine
type Config: Config;
/// The decode estimate used by this engine
type DecodeEstimate: DecodeEstimate;
/// This is not meant to be called directly; it is only for `Engine` implementors.
/// See the other `encode*` functions on this trait.
///
/// Encode the `input` bytes into the `output` buffer based on the mapping in `encode_table`.
///
/// `output` will be long enough to hold the encoded data.
///
/// Returns the number of bytes written.
///
/// No padding should be written; that is handled separately.
///
/// Must not write any bytes into the output slice other than the encoded data.
#[doc(hidden)]
fn internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize;
/// This is not meant to be called directly; it is only for `Engine` implementors.
///
/// As an optimization to prevent the decoded length from being calculated twice, it is
/// sometimes helpful to have a conservative estimate of the decoded size before doing the
/// decoding, so this calculation is done separately and passed to [Engine::decode()] as needed.
#[doc(hidden)]
fn internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate;
/// This is not meant to be called directly; it is only for `Engine` implementors.
/// See the other `decode*` functions on this trait.
///
/// Decode `input` base64 bytes into the `output` buffer.
///
/// `decode_estimate` is the result of [Engine::internal_decoded_len_estimate()], which is passed in to avoid
/// calculating it again (expensive on short inputs).`
///
/// Each complete 4-byte chunk of encoded data decodes to 3 bytes of decoded data, but this
/// function must also handle the final possibly partial chunk.
/// If the input length is not a multiple of 4, or uses padding bytes to reach a multiple of 4,
/// the trailing 2 or 3 bytes must decode to 1 or 2 bytes, respectively, as per the
/// [RFC](https://tools.ietf.org/html/rfc4648#section-3.5).
///
/// Decoding must not write any bytes into the output slice other than the decoded data.
///
/// Non-canonical trailing bits in the final tokens or non-canonical padding must be reported as
/// errors unless the engine is configured otherwise.
///
/// # Panics
///
/// Panics if `output` is too small.
#[doc(hidden)]
fn internal_decode(
&self,
input: &[u8],
output: &mut [u8],
decode_estimate: Self::DecodeEstimate,
) -> Result<DecodeMetadata, DecodeError>;
/// Returns the config for this engine.
fn config(&self) -> &Self::Config;
/// Encode arbitrary octets as base64 using the provided `Engine`.
/// Returns a `String`.
///
/// # Example
///
/// ```rust
/// use base64::{Engine as _, engine::{self, general_purpose}, alphabet};
///
/// let b64 = general_purpose::STANDARD.encode(b"hello world~");
/// println!("{}", b64);
///
/// const CUSTOM_ENGINE: engine::GeneralPurpose =
/// engine::GeneralPurpose::new(&alphabet::URL_SAFE, general_purpose::NO_PAD);
///
/// let b64_url = CUSTOM_ENGINE.encode(b"hello internet~");
#[cfg(any(feature = "alloc", feature = "std", test))]
fn encode<T: AsRef<[u8]>>(&self, input: T) -> String {
let encoded_size = encoded_len(input.as_ref().len(), self.config().encode_padding())
.expect("integer overflow when calculating buffer size");
let mut buf = vec![0; encoded_size];
encode_with_padding(input.as_ref(), &mut buf[..], self, encoded_size);
String::from_utf8(buf).expect("Invalid UTF8")
}
/// Encode arbitrary octets as base64 into a supplied `String`.
/// Writes into the supplied `String`, which may allocate if its internal buffer isn't big enough.
///
/// # Example
///
/// ```rust
/// use base64::{Engine as _, engine::{self, general_purpose}, alphabet};
/// const CUSTOM_ENGINE: engine::GeneralPurpose =
/// engine::GeneralPurpose::new(&alphabet::URL_SAFE, general_purpose::NO_PAD);
///
/// fn main() {
/// let mut buf = String::new();
/// general_purpose::STANDARD.encode_string(b"hello world~", &mut buf);
/// println!("{}", buf);
///
/// buf.clear();
/// CUSTOM_ENGINE.encode_string(b"hello internet~", &mut buf);
/// println!("{}", buf);
/// }
/// ```
#[cfg(any(feature = "alloc", feature = "std", test))]
fn encode_string<T: AsRef<[u8]>>(&self, input: T, output_buf: &mut String) {
let input_bytes = input.as_ref();
{
let mut sink = chunked_encoder::StringSink::new(output_buf);
chunked_encoder::ChunkedEncoder::new(self)
.encode(input_bytes, &mut sink)
.expect("Writing to a String shouldn't fail");
}
}
/// Encode arbitrary octets as base64 into a supplied slice.
/// Writes into the supplied output buffer.
///
/// This is useful if you wish to avoid allocation entirely (e.g. encoding into a stack-resident
/// or statically-allocated buffer).
///
/// # Example
///
/// ```rust
/// use base64::{Engine as _, engine::general_purpose};
/// let s = b"hello internet!";
/// let mut buf = Vec::new();
/// // make sure we'll have a slice big enough for base64 + padding
/// buf.resize(s.len() * 4 / 3 + 4, 0);
///
/// let bytes_written = general_purpose::STANDARD.encode_slice(s, &mut buf).unwrap();
///
/// // shorten our vec down to just what was written
/// buf.truncate(bytes_written);
///
/// assert_eq!(s, general_purpose::STANDARD.decode(&buf).unwrap().as_slice());
/// ```
fn encode_slice<T: AsRef<[u8]>>(
&self,
input: T,
output_buf: &mut [u8],
) -> Result<usize, EncodeSliceError> {
let input_bytes = input.as_ref();
let encoded_size = encoded_len(input_bytes.len(), self.config().encode_padding())
.expect("usize overflow when calculating buffer size");
if output_buf.len() < encoded_size {
return Err(EncodeSliceError::OutputSliceTooSmall);
}
let b64_output = &mut output_buf[0..encoded_size];
encode_with_padding(input_bytes, b64_output, self, encoded_size);
Ok(encoded_size)
}
/// Decode the input into a new `Vec`.
///
/// # Example
///
/// ```rust
/// use base64::{Engine as _, alphabet, engine::{self, general_purpose}};
///
/// let bytes = general_purpose::STANDARD
/// .decode("aGVsbG8gd29ybGR+Cg==").unwrap();
/// println!("{:?}", bytes);
///
/// // custom engine setup
/// let bytes_url = engine::GeneralPurpose::new(
/// &alphabet::URL_SAFE,
/// general_purpose::NO_PAD)
/// .decode("aGVsbG8gaW50ZXJuZXR-Cg").unwrap();
/// println!("{:?}", bytes_url);
/// ```
#[cfg(any(feature = "alloc", feature = "std", test))]
fn decode<T: AsRef<[u8]>>(&self, input: T) -> Result<Vec<u8>, DecodeError> {
let input_bytes = input.as_ref();
let estimate = self.internal_decoded_len_estimate(input_bytes.len());
let mut buffer = vec![0; estimate.decoded_len_estimate()];
let bytes_written = self
.internal_decode(input_bytes, &mut buffer, estimate)?
.decoded_len;
buffer.truncate(bytes_written);
Ok(buffer)
}
/// Decode the `input` into the supplied `buffer`.
///
/// Writes into the supplied `Vec`, which may allocate if its internal buffer isn't big enough.
/// Returns a `Result` containing an empty tuple, aka `()`.
///
/// # Example
///
/// ```rust
/// use base64::{Engine as _, alphabet, engine::{self, general_purpose}};
/// const CUSTOM_ENGINE: engine::GeneralPurpose =
/// engine::GeneralPurpose::new(&alphabet::URL_SAFE, general_purpose::PAD);
///
/// fn main() {
/// use base64::Engine;
/// let mut buffer = Vec::<u8>::new();
/// // with the default engine
/// general_purpose::STANDARD
/// .decode_vec("aGVsbG8gd29ybGR+Cg==", &mut buffer,).unwrap();
/// println!("{:?}", buffer);
///
/// buffer.clear();
///
/// // with a custom engine
/// CUSTOM_ENGINE.decode_vec(
/// "aGVsbG8gaW50ZXJuZXR-Cg==",
/// &mut buffer,
/// ).unwrap();
/// println!("{:?}", buffer);
/// }
/// ```
#[cfg(any(feature = "alloc", feature = "std", test))]
fn decode_vec<T: AsRef<[u8]>>(
&self,
input: T,
buffer: &mut Vec<u8>,
) -> Result<(), DecodeError> {
let input_bytes = input.as_ref();
let starting_output_len = buffer.len();
let estimate = self.internal_decoded_len_estimate(input_bytes.len());
let total_len_estimate = estimate
.decoded_len_estimate()
.checked_add(starting_output_len)
.expect("Overflow when calculating output buffer length");
buffer.resize(total_len_estimate, 0);
let buffer_slice = &mut buffer.as_mut_slice()[starting_output_len..];
let bytes_written = self
.internal_decode(input_bytes, buffer_slice, estimate)?
.decoded_len;
buffer.truncate(starting_output_len + bytes_written);
Ok(())
}
/// Decode the input into the provided output slice.
///
/// Returns the number of bytes written to the slice, or an error if `output` is smaller than
/// the estimated decoded length.
///
/// This will not write any bytes past exactly what is decoded (no stray garbage bytes at the end).
///
/// See [crate::decoded_len_estimate] for calculating buffer sizes.
///
/// See [Engine::decode_slice_unchecked] for a version that panics instead of returning an error
/// if the output buffer is too small.
fn decode_slice<T: AsRef<[u8]>>(
&self,
input: T,
output: &mut [u8],
) -> Result<usize, DecodeSliceError> {
let input_bytes = input.as_ref();
let estimate = self.internal_decoded_len_estimate(input_bytes.len());
if output.len() < estimate.decoded_len_estimate() {
return Err(DecodeSliceError::OutputSliceTooSmall);
}
self.internal_decode(input_bytes, output, estimate)
.map_err(|e| e.into())
.map(|dm| dm.decoded_len)
}
/// Decode the input into the provided output slice.
///
/// Returns the number of bytes written to the slice.
///
/// This will not write any bytes past exactly what is decoded (no stray garbage bytes at the end).
///
/// See [crate::decoded_len_estimate] for calculating buffer sizes.
///
/// See [Engine::decode_slice] for a version that returns an error instead of panicking if the output
/// buffer is too small.
///
/// # Panics
///
/// Panics if the provided output buffer is too small for the decoded data.
fn decode_slice_unchecked<T: AsRef<[u8]>>(
&self,
input: T,
output: &mut [u8],
) -> Result<usize, DecodeError> {
let input_bytes = input.as_ref();
self.internal_decode(
input_bytes,
output,
self.internal_decoded_len_estimate(input_bytes.len()),
)
.map(|dm| dm.decoded_len)
}
}
/// The minimal level of configuration that engines must support.
pub trait Config {
/// Returns `true` if padding should be added after the encoded output.
///
/// Padding is added outside the engine's encode() since the engine may be used
/// to encode only a chunk of the overall output, so it can't always know when
/// the output is "done" and would therefore need padding (if configured).
// It could be provided as a separate parameter when encoding, but that feels like
// leaking an implementation detail to the user, and it's hopefully more convenient
// to have to only pass one thing (the engine) to any part of the API.
fn encode_padding(&self) -> bool;
}
/// The decode estimate used by an engine implementation. Users do not need to interact with this;
/// it is only for engine implementors.
///
/// Implementors may store relevant data here when constructing this to avoid having to calculate
/// them again during actual decoding.
pub trait DecodeEstimate {
/// Returns a conservative (err on the side of too big) estimate of the decoded length to use
/// for pre-allocating buffers, etc.
///
/// The estimate must be no larger than the next largest complete triple of decoded bytes.
/// That is, the final quad of tokens to decode may be assumed to be complete with no padding.
fn decoded_len_estimate(&self) -> usize;
}
/// Controls how pad bytes are handled when decoding.
///
/// Each [Engine] must support at least the behavior indicated by
/// [DecodePaddingMode::RequireCanonical], and may support other modes.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DecodePaddingMode {
/// Canonical padding is allowed, but any fewer padding bytes than that is also allowed.
Indifferent,
/// Padding must be canonical (0, 1, or 2 `=` as needed to produce a 4 byte suffix).
RequireCanonical,
/// Padding must be absent -- for when you want predictable padding, without any wasted bytes.
RequireNone,
}
/// Metadata about the result of a decode operation
#[derive(PartialEq, Eq, Debug)]
pub struct DecodeMetadata {
/// Number of decoded bytes output
pub(crate) decoded_len: usize,
/// Offset of the first padding byte in the input, if any
pub(crate) padding_offset: Option<usize>,
}
impl DecodeMetadata {
pub(crate) fn new(decoded_bytes: usize, padding_index: Option<usize>) -> Self {
Self {
decoded_len: decoded_bytes,
padding_offset: padding_index,
}
}
}