1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// pest. The Elegant Parser
// Copyright (c) 2018 Dragoș Tiselice
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

//! Constructs useful in infix operator parsing with the precedence climbing method.

use alloc::borrow::Cow;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::iter::Peekable;
use core::ops::BitOr;

use crate::iterators::Pair;
use crate::RuleType;

/// Macro for more convenient const fn definition of `prec_climber::PrecClimber`.
///
/// # Examples
///
/// ```
/// # use pest::prec_climber::{Assoc, PrecClimber};
/// # use pest::prec_climber;
/// # #[allow(non_camel_case_types)]
/// # #[allow(dead_code)]
/// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
/// # enum Rule {
/// #     plus,
/// #     minus,
/// #     times,
/// #     divide,
/// #     power
/// # }
/// static CLIMBER: PrecClimber<Rule> = prec_climber![
///     L   plus | minus,
///     L   times | divide,
///     R   power,
/// ];
/// ```
#[cfg(feature = "const_prec_climber")]
#[macro_export]
macro_rules! prec_climber {
    (
        $( $assoc:ident $rule:ident $( | $rules:ident )* ),+ $(,)?
    ) => {{
        prec_climber!(
            @precedences { 1u32 }
            $( [ $rule $( $rules )* ] )*
        );

        $crate::prec_climber::PrecClimber::new_const(
            prec_climber!(
                @array
                $( $assoc $rule $(, $assoc $rules )* ),*
            )
        )
    }};

    ( @assoc L ) => { $crate::prec_climber::Assoc::Left };
    ( @assoc R ) => { $crate::prec_climber::Assoc::Right };

    (
        @array
        $(
            $assoc:ident $rule:ident
        ),*
    ) => {
        &[
            $(
                (
                    Rule::$rule,
                    $rule,
                    prec_climber!( @assoc $assoc ),
                )
            ),*
        ]
    };

    (
        @precedences { $precedence:expr }
    ) => {};

    (
        @precedences { $precedence:expr }
        [ $( $rule:ident )* ]
        $( [ $( $rules:ident )* ] )*
    ) => {
        $(
            #[allow(non_upper_case_globals)]
            const $rule: u32 = $precedence;
        )*
        prec_climber!(
            @precedences { 1u32 + $precedence }
            $( [ $( $rules )* ] )*
        );
    };
}

/// Associativity of an [`Operator`].
///
/// [`Operator`]: struct.Operator.html
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Assoc {
    /// Left `Operator` associativity
    Left,
    /// Right `Operator` associativity
    Right,
}

/// Infix operator used in [`PrecClimber`].
///
/// [`PrecClimber`]: struct.PrecClimber.html
#[derive(Debug)]
pub struct Operator<R: RuleType> {
    rule: R,
    assoc: Assoc,
    next: Option<Box<Operator<R>>>,
}

impl<R: RuleType> Operator<R> {
    /// Creates a new `Operator` from a `Rule` and `Assoc`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest::prec_climber::{Assoc, Operator};
    /// # #[allow(non_camel_case_types)]
    /// # #[allow(dead_code)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// # enum Rule {
    /// #     plus,
    /// #     minus
    /// # }
    /// Operator::new(Rule::plus, Assoc::Left) | Operator::new(Rule::minus, Assoc::Right);
    /// ```
    pub fn new(rule: R, assoc: Assoc) -> Operator<R> {
        Operator {
            rule,
            assoc,
            next: None,
        }
    }
}

impl<R: RuleType> BitOr for Operator<R> {
    type Output = Self;

    fn bitor(mut self, rhs: Self) -> Self {
        fn assign_next<R: RuleType>(op: &mut Operator<R>, next: Operator<R>) {
            if let Some(ref mut child) = op.next {
                assign_next(child, next);
            } else {
                op.next = Some(Box::new(next));
            }
        }

        assign_next(&mut self, rhs);
        self
    }
}

/// List of operators and precedences, which can perform [precedence climbing][1] on infix
/// expressions contained in a [`Pairs`]. The token pairs contained in the `Pairs` should start
/// with a *primary* pair and then alternate between an *operator* and a *primary*.
///
/// [1]: https://en.wikipedia.org/wiki/Operator-precedence_parser#Precedence_climbing_method
/// [`Pairs`]: ../iterators/struct.Pairs.html
#[derive(Debug)]
pub struct PrecClimber<R: Clone + 'static> {
    ops: Cow<'static, [(R, u32, Assoc)]>,
}

#[cfg(feature = "const_prec_climber")]
impl<R: Clone + 'static> PrecClimber<R> {
    /// Creates a new `PrecClimber` directly from a static slice of
    /// `(rule: Rule, precedence: u32, associativity: Assoc)` tuples.
    ///
    /// Precedence starts from `1`.  Entries don't have to be ordered in any way, but it's easier to read when
    /// sorted.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest::prec_climber::{Assoc, PrecClimber};
    /// # #[allow(non_camel_case_types)]
    /// # #[allow(dead_code)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// # enum Rule {
    /// #     plus,
    /// #     minus,
    /// #     times,
    /// #     divide,
    /// #     power
    /// # }
    /// static CLIMBER: PrecClimber<Rule> = PrecClimber::new_const(&[
    ///     (Rule::plus, 1, Assoc::Left), (Rule::minus, 1, Assoc::Left),
    ///     (Rule::times, 2, Assoc::Left), (Rule::divide, 2, Assoc::Left),
    ///     (Rule::power, 3, Assoc::Right)
    /// ]);
    /// ```
    pub const fn new_const(ops: &'static [(R, u32, Assoc)]) -> PrecClimber<R> {
        PrecClimber {
            ops: Cow::Borrowed(ops),
        }
    }
}

impl<R: RuleType> PrecClimber<R> {
    // find matching operator by `rule`
    fn get(&self, rule: &R) -> Option<(u32, Assoc)> {
        self.ops
            .iter()
            .find(|(r, _, _)| r == rule)
            .map(|(_, precedence, assoc)| (*precedence, *assoc))
    }

    /// Creates a new `PrecClimber` from the `Operator`s contained in `ops`. Every entry in the
    /// `Vec` has precedence *index + 1*. In order to have operators with same precedence, they need
    /// to be chained with `|` between them.
    ///
    /// # Examples
    ///
    /// ```
    /// # use pest::prec_climber::{Assoc, Operator, PrecClimber};
    /// # #[allow(non_camel_case_types)]
    /// # #[allow(dead_code)]
    /// # #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
    /// # enum Rule {
    /// #     plus,
    /// #     minus,
    /// #     times,
    /// #     divide,
    /// #     power
    /// # }
    /// PrecClimber::new(vec![
    ///     Operator::new(Rule::plus, Assoc::Left) | Operator::new(Rule::minus, Assoc::Left),
    ///     Operator::new(Rule::times, Assoc::Left) | Operator::new(Rule::divide, Assoc::Left),
    ///     Operator::new(Rule::power, Assoc::Right)
    /// ]);
    /// ```
    pub fn new(ops: Vec<Operator<R>>) -> PrecClimber<R> {
        let ops = ops
            .into_iter()
            .zip(1..)
            .fold(Vec::new(), |mut vec, (op, prec)| {
                let mut next = Some(op);

                while let Some(op) = next.take() {
                    let Operator {
                        rule,
                        assoc,
                        next: op_next,
                    } = op;

                    vec.push((rule, prec, assoc));
                    next = op_next.map(|op| *op);
                }

                vec
            });

        PrecClimber {
            ops: Cow::Owned(ops),
        }
    }

    /// Performs the precedence climbing algorithm on the `pairs` in a similar manner to map-reduce.
    /// *Primary* pairs are mapped with `primary` and then reduced to one single result with
    /// `infix`.
    ///
    /// # Panics
    ///
    /// Panics will occur when `pairs` is empty or when the alternating *primary*, *operator*,
    /// *primary* order is not respected.
    ///
    /// # Examples
    ///
    /// ```ignore
    /// let primary = |pair| {
    ///     consume(pair, climber)
    /// };
    /// let infix = |lhs: i32, op: Pair<Rule>, rhs: i32| {
    ///     match op.rule() {
    ///         Rule::plus => lhs + rhs,
    ///         Rule::minus => lhs - rhs,
    ///         Rule::times => lhs * rhs,
    ///         Rule::divide => lhs / rhs,
    ///         Rule::power => lhs.pow(rhs as u32),
    ///         _ => unreachable!()
    ///     }
    /// };
    ///
    /// let result = climber.climb(pairs, primary, infix);
    /// ```
    pub fn climb<'i, P, F, G, T>(&self, mut pairs: P, mut primary: F, mut infix: G) -> T
    where
        P: Iterator<Item = Pair<'i, R>>,
        F: FnMut(Pair<'i, R>) -> T,
        G: FnMut(T, Pair<'i, R>, T) -> T,
    {
        let lhs = primary(
            pairs
                .next()
                .expect("precedence climbing requires a non-empty Pairs"),
        );
        self.climb_rec(lhs, 0, &mut pairs.peekable(), &mut primary, &mut infix)
    }

    fn climb_rec<'i, P, F, G, T>(
        &self,
        mut lhs: T,
        min_prec: u32,
        pairs: &mut Peekable<P>,
        primary: &mut F,
        infix: &mut G,
    ) -> T
    where
        P: Iterator<Item = Pair<'i, R>>,
        F: FnMut(Pair<'i, R>) -> T,
        G: FnMut(T, Pair<'i, R>, T) -> T,
    {
        while pairs.peek().is_some() {
            let rule = pairs.peek().unwrap().as_rule();
            if let Some((prec, _)) = self.get(&rule) {
                if prec >= min_prec {
                    let op = pairs.next().unwrap();
                    let mut rhs = primary(pairs.next().expect(
                        "infix operator must be followed by \
                         a primary expression",
                    ));

                    while pairs.peek().is_some() {
                        let rule = pairs.peek().unwrap().as_rule();
                        if let Some((new_prec, assoc)) = self.get(&rule) {
                            if new_prec > prec || assoc == Assoc::Right && new_prec == prec {
                                rhs = self.climb_rec(rhs, new_prec, pairs, primary, infix);
                            } else {
                                break;
                            }
                        } else {
                            break;
                        }
                    }

                    lhs = infix(lhs, op, rhs);
                } else {
                    break;
                }
            } else {
                break;
            }
        }

        lhs
    }
}