1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
use psl::{datamodel_connector::ConnectorCapability, PreviewFeature};
use crate::*;
/// `QueryArguments` define various constraints queried data should fulfill:
/// - `cursor`, `take`, `skip` page through the data.
/// - `filter` scopes the data by defining conditions (akin to `WHERE` in SQL).
/// - `order_by` defines the ordering of records, from most high to low precedence.
/// - `distinct` designates the fields on which the records should be distinct.
/// - The `ignore_*` flags are a temporary bandaid to tell the connector to do not
/// include certain constraints when building queries, because the core is already
/// performing these action in a different manner (e.g. in-memory on all records).
///
/// A query argument struct is always valid over a single model only, meaning that all
/// data referenced in a single query argument instance is always refering to data of
/// a single model (e.g. the cursor projection, distinct projection, orderby, ...).
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct QueryArguments {
pub model: Model,
pub cursor: Option<SelectionResult>,
pub take: Option<i64>,
pub skip: Option<i64>,
pub filter: Option<Filter>,
pub order_by: Vec<OrderBy>,
pub distinct: Option<FieldSelection>,
pub ignore_skip: bool,
pub ignore_take: bool,
pub relation_load_strategy: Option<RelationLoadStrategy>,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum RelationLoadStrategy {
Join,
Query,
}
impl RelationLoadStrategy {
pub fn is_query(&self) -> bool {
matches!(self, RelationLoadStrategy::Query)
}
}
impl std::fmt::Debug for QueryArguments {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("QueryArguments")
.field("model", &self.model.name())
.field("cursor", &self.cursor)
.field("take", &self.take)
.field("skip", &self.skip)
.field("filter", &self.filter)
.field("order_by", &self.order_by)
.field("distinct", &self.distinct)
.field("ignore_skip", &self.ignore_skip)
.field("ignore_take", &self.ignore_take)
.field("relation_load_strategy", &self.relation_load_strategy)
.finish()
}
}
impl QueryArguments {
pub fn new(model: Model) -> Self {
Self {
model,
cursor: None,
take: None,
skip: None,
filter: None,
order_by: vec![],
distinct: None,
ignore_take: false,
ignore_skip: false,
relation_load_strategy: None,
}
}
pub fn do_nothing(&self) -> bool {
self.cursor.is_none()
&& self.take.is_none()
&& self.skip.is_none()
&& self.filter.is_none()
&& self.order_by.is_empty()
&& self.distinct.is_none()
}
/// We can't execute all operations on the DB level reliably.
/// This is a marker that generally expresses whether or not a set of records can be
/// retrieved by the connector or if it requires the query engine to fetch a raw set
/// of records and perform certain operations itself, in-memory.
pub fn requires_inmemory_processing(&self) -> bool {
self.contains_unstable_cursor() || self.contains_null_cursor() || self.requires_inmemory_distinct()
}
pub fn requires_inmemory_distinct(&self) -> bool {
self.distinct.is_some() && !self.can_distinct_in_db()
}
fn can_distinct_in_db(&self) -> bool {
let has_distinct_feature = self
.model()
.dm
.schema
.configuration
.preview_features()
.contains(PreviewFeature::NativeDistinct);
let connector_can_distinct_in_db = self
.model()
.dm
.schema
.connector
.has_capability(ConnectorCapability::DistinctOn);
has_distinct_feature && connector_can_distinct_in_db && self.order_by.is_empty()
}
/// An unstable cursor is a cursor that is used in conjunction with an unstable (non-unique) combination of orderBys.
pub fn contains_unstable_cursor(&self) -> bool {
self.cursor.is_some() && !self.is_stable_ordering()
}
/// A null cursor is a cursor that is used in conjunction with a nullable order by (i.e. a field is optional).
pub fn contains_null_cursor(&self) -> bool {
self.cursor.is_some()
&& self.order_by.iter().any(|o| match o {
OrderBy::Scalar(o) => !o.field.is_required(),
_ => false,
})
}
/// Checks if the orderBy provided is guaranteeing a stable ordering of records for the model.
/// For that purpose we need to distinguish orderings on the source model, i.e. the model that
/// we're sorting on the top level (where orderBys are located that are done without relations)
/// and orderings that require a relation or composite hop. Scalar orderings that require a hop are
/// only guaranteed stable ordering if they are strictly over 1:1. As soon as there's
/// a m:1 (or m:n for later implementations) hop involved a unique on the to-one side can't
/// be considered unique anymore for the purpose of ordering records, as many left hand records
/// (the many side) can have the one side. A simple example would be a User <> Post relation
/// where a post can have only one author but an author (User) can have many posts. If posts
/// are ordered by related author id, then we can't reliably order posts, as the following can happen:
/// ```text
/// post_id, post_title, author_id
/// 1 post1 1
/// 2 post2 1
/// 3 post3 2
/// ```
/// So even though the id is unique, it's not guaranteeing a stable ordering in the context of orderBy here.
///
/// Returns:
/// - `true`, if:
/// * no orderings are done, or ...
/// * at least one unique field is present on the source model `orderBy`, or ...
/// * source model contains a combination of fields that is marked as unique, or ...
/// * an orderBy hop contains a unique and is done solely over 1:1 relations.
/// - `false` otherwise.
pub fn is_stable_ordering(&self) -> bool {
if self.order_by.is_empty() {
return true;
}
// We're filtering order by aggregation & relevance since they will never lead to stable ordering anyway.
let stable_candidates: Vec<_> = self
.order_by
.iter()
.filter_map(|o| match o {
OrderBy::Scalar(o) => Some(o),
_ => None,
})
.collect();
// Partition into orderings on the same model and ones that require hops.
// Note: One ordering is always on one scalar in the end.
let (on_model, on_relation): (Vec<&OrderByScalar>, Vec<&OrderByScalar>) =
stable_candidates.iter().partition(|o| o.path.is_empty());
// Indicates whether or not a combination of contained fields is on the source model (we don't check for relations for now).
let order_by_contains_unique_index = self.model.unique_indexes().any(|index| {
index.fields().all(|f| {
on_model
.iter()
.any(|o| Some(o.field.id) == f.as_scalar_field().map(|sf| ScalarFieldId::InModel(sf.id)))
})
});
let source_contains_unique = on_model.iter().any(|o| o.field.unique());
let relations_contain_1to1_unique = on_relation.iter().any(|o| {
o.field.unique()
&& o.path.iter().all(|hop| match hop {
OrderByHop::Relation(rf) => rf.relation().is_one_to_one(),
OrderByHop::Composite(_) => false, // Composites do not have uniques, as such they can't fulfill uniqueness requirement even if they're 1:1.
})
});
let has_optional_hop = on_relation.iter().any(|o| {
o.path.iter().any(|hop| match hop {
OrderByHop::Relation(rf) => rf.arity().is_optional(),
OrderByHop::Composite(cf) => !cf.is_required(),
})
});
// Optional hops introduce NULLs that make the ordering inherently unstable.
if has_optional_hop {
return false;
}
source_contains_unique || order_by_contains_unique_index || relations_contain_1to1_unique
}
pub fn take_abs(&self) -> Option<i64> {
self.take.map(|t| if t < 0 { -t } else { t })
}
pub fn has_unbatchable_ordering(&self) -> bool {
self.order_by.iter().any(|o| !matches!(o, OrderBy::Scalar(_)))
}
pub fn has_unbatchable_filters(&self) -> bool {
match &self.filter {
None => false,
Some(filter) => !filter.can_batch(),
}
}
pub fn should_batch(&self, chunk_size: usize) -> bool {
self.filter
.as_ref()
.map(|filter| filter.should_batch(chunk_size))
.unwrap_or(false)
&& self.cursor.is_none()
}
pub fn batched(self, chunk_size: usize) -> Vec<Self> {
match self.filter {
Some(filter) => {
let model = self.model;
let cursor = self.cursor;
let take = self.take;
let skip = self.skip;
let order_by = self.order_by;
let distinct = self.distinct;
let ignore_skip = self.ignore_skip;
let ignore_take = self.ignore_take;
let relation_load_strategy = self.relation_load_strategy;
filter
.batched(chunk_size)
.into_iter()
.map(|filter| QueryArguments {
model: model.clone(),
cursor: cursor.clone(),
take,
skip,
filter: Some(filter),
order_by: order_by.clone(),
distinct: distinct.clone(),
ignore_skip,
ignore_take,
relation_load_strategy,
})
.collect()
}
_ => vec![self],
}
}
pub fn model(&self) -> &Model {
&self.model
}
}
impl<T> From<(Model, T)> for QueryArguments
where
T: Into<Filter>,
{
fn from(model_filter: (Model, T)) -> Self {
let mut query_arguments = Self::new(model_filter.0);
query_arguments.filter = Some(model_filter.1.into());
query_arguments
}
}