1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use super::{
    expression::*,
    query_interpreters::{read, write},
    InterpretationResult, InterpreterError,
};
use crate::{Query, QueryResult};
use connector::ConnectionLike;
use futures::future::BoxFuture;
use query_structure::prelude::*;
use std::{collections::HashMap, fmt};
use tracing::Instrument;

#[derive(Debug, Clone)]
pub(crate) enum ExpressionResult {
    /// A result from a query execution.
    Query(QueryResult),

    /// A fixed result returned in the query graph.
    FixedResult(Vec<SelectionResult>),

    /// A result from a computation in the query graph.
    Computation(ComputationResult),

    /// An empty result
    Empty,
}

#[derive(Debug, Clone)]
pub enum ComputationResult {
    Diff(DiffResult),
}

/// Diff of two identifier vectors A and B:
/// `left` contains all elements that are in A but not in B.
/// `right` contains all elements that are in B but not in A.
#[derive(Debug, Clone)]
pub struct DiffResult {
    pub left: Vec<SelectionResult>,
    pub right: Vec<SelectionResult>,
}

impl DiffResult {
    pub fn is_empty(&self) -> bool {
        self.left.is_empty() && self.right.is_empty()
    }
}

impl ExpressionResult {
    /// Attempts to transform this `ExpressionResult` into a vector of `SelectionResult`s corresponding to the passed desired selection shape.
    /// A vector is returned as some expression results return more than one result row at once.
    pub fn as_selection_results(&self, field_selection: &FieldSelection) -> InterpretationResult<Vec<SelectionResult>> {
        let converted = match self {
            Self::Query(ref result) => match result {
                QueryResult::Id(id) => match id {
                    Some(id) if field_selection.matches(id) => Some(vec![id.clone()]),
                    None => Some(vec![]),
                    Some(id) => {
                        trace!(
                            "Selection result {:?} does not match field selection {:?}",
                            id,
                            field_selection
                        );
                        None
                    }
                },

                // We always select IDs, the unwraps are safe.
                QueryResult::RecordSelection(Some(rs)) => Some(
                    rs.records
                        .extract_selection_results(field_selection)
                        .expect("Expected record selection to contain required model ID fields.")
                        .into_iter()
                        .collect(),
                ),
                QueryResult::RecordSelectionWithRelations(rsr) => Some(
                    rsr.records
                        .extract_selection_results(field_selection)
                        .expect("Expected record selection to contain required model ID fields.")
                        .into_iter()
                        .collect(),
                ),
                QueryResult::RecordSelection(None) => Some(vec![]),

                _ => None,
            },

            Self::FixedResult(p) => p
                .clone()
                .into_iter()
                .map(|sr| field_selection.assimilate(sr))
                .collect::<std::result::Result<Vec<_>, _>>()
                .ok(),

            _ => None,
        };

        converted.ok_or_else(|| {
            InterpreterError::InterpretationError(
                "Unable to convert expression result into a set of selection results".to_owned(),
                None,
            )
        })
    }

    pub fn as_query_result(&self) -> InterpretationResult<&QueryResult> {
        let converted = match self {
            Self::Query(ref q) => Some(q),
            _ => None,
        };

        converted.ok_or_else(|| {
            InterpreterError::InterpretationError("Unable to convert result into a query result".to_owned(), None)
        })
    }

    pub fn as_diff_result(&self) -> InterpretationResult<&DiffResult> {
        let converted = match self {
            Self::Computation(ComputationResult::Diff(ref d)) => Some(d),
            _ => None,
        };

        converted.ok_or_else(|| {
            InterpreterError::InterpretationError("Unable to convert result into a computation result".to_owned(), None)
        })
    }
}

#[derive(Default, Debug, Clone)]
pub(crate) struct Env {
    env: HashMap<String, ExpressionResult>,
}

impl Env {
    pub(crate) fn get(&self, key: &str) -> Option<&ExpressionResult> {
        self.env.get(key)
    }

    pub(crate) fn insert(&mut self, key: String, value: ExpressionResult) {
        self.env.insert(key, value);
    }

    pub(crate) fn remove(&mut self, key: &str) -> InterpretationResult<ExpressionResult> {
        match self.env.remove(key) {
            Some(val) => Ok(val),
            None => Err(InterpreterError::EnvVarNotFound(key.to_owned())),
        }
    }
}

pub(crate) struct QueryInterpreter<'conn> {
    pub(crate) conn: &'conn mut dyn ConnectionLike,
    log: Vec<String>,
}

impl<'conn> fmt::Debug for QueryInterpreter<'conn> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("QueryInterpreter").finish()
    }
}

impl<'conn> QueryInterpreter<'conn> {
    fn log_enabled() -> bool {
        tracing::level_filters::STATIC_MAX_LEVEL == tracing::level_filters::LevelFilter::TRACE
    }

    pub(crate) fn new(conn: &'conn mut dyn ConnectionLike) -> QueryInterpreter<'conn> {
        let mut log = Vec::new();

        if Self::log_enabled() {
            log.push("\n".to_string());
        }

        Self { conn, log }
    }

    pub(crate) fn interpret(
        &mut self,
        exp: Expression,
        env: Env,
        level: usize,
        trace_id: Option<String>,
    ) -> BoxFuture<'_, InterpretationResult<ExpressionResult>> {
        match exp {
            Expression::Func { func } => {
                let expr = func(env.clone());

                Box::pin(async move { self.interpret(expr?, env, level, trace_id).await })
            }

            Expression::Sequence { seq } if seq.is_empty() => Box::pin(async { Ok(ExpressionResult::Empty) }),

            Expression::Sequence { seq } => {
                Box::pin(async move {
                    self.log_line(level, || "SEQ");

                    let mut results = Vec::with_capacity(seq.len());

                    for expr in seq {
                        results.push(self.interpret(expr, env.clone(), level + 1, trace_id.clone()).await?);
                    }

                    // Last result gets returned
                    Ok(results.pop().unwrap())
                })
            }

            Expression::Let {
                bindings,
                mut expressions,
            } => {
                Box::pin(async move {
                    let mut inner_env = env.clone();
                    self.log_line(level, || "LET");

                    for binding in bindings {
                        self.log_line(level + 1, || format!("bind {} ", &binding.name));

                        let result = self
                            .interpret(binding.expr, env.clone(), level + 2, trace_id.clone())
                            .await?;
                        inner_env.insert(binding.name, result);
                    }

                    // the unwrapping improves the readability of the log significantly
                    let next_expression = if expressions.len() == 1 {
                        expressions.pop().unwrap()
                    } else {
                        Expression::Sequence { seq: expressions }
                    };

                    self.interpret(next_expression, inner_env, level + 1, trace_id).await
                })
            }

            Expression::Query { query } => Box::pin(async move {
                match *query {
                    Query::Read(read) => {
                        self.log_line(level, || format!("READ {read}"));
                        let span = info_span!("prisma:engine:read-execute");
                        Ok(read::execute(self.conn, read, None, trace_id)
                            .instrument(span)
                            .await
                            .map(ExpressionResult::Query)?)
                    }

                    Query::Write(write) => {
                        self.log_line(level, || format!("WRITE {write}"));
                        let span = info_span!("prisma:engine:write-execute");
                        Ok(write::execute(self.conn, write, trace_id)
                            .instrument(span)
                            .await
                            .map(ExpressionResult::Query)?)
                    }
                }
            }),

            Expression::Get { binding_name } => Box::pin(async move {
                self.log_line(level, || format!("GET {binding_name}"));
                env.clone().remove(&binding_name)
            }),

            Expression::GetFirstNonEmpty { binding_names } => Box::pin(async move {
                self.log_line(level, || format!("GET FIRST NON EMPTY {binding_names:?}"));

                Ok(binding_names
                    .into_iter()
                    .find_map(|binding_name| {
                        env.get(&binding_name)
                            .map(|_| env.clone().remove(&binding_name).unwrap())
                    })
                    .unwrap())
            }),

            Expression::If {
                func,
                then,
                else_: elze,
            } => Box::pin(async move {
                self.log_line(level, || "IF");

                if func() {
                    self.interpret(Expression::Sequence { seq: then }, env, level + 1, trace_id)
                        .await
                } else {
                    self.interpret(Expression::Sequence { seq: elze }, env, level + 1, trace_id)
                        .await
                }
            }),

            Expression::Return { result } => Box::pin(async move {
                self.log_line(level, || "RETURN");
                Ok(*result)
            }),
        }
    }

    pub(crate) fn log_output(&self) -> String {
        let mut output = String::with_capacity(self.log.len() * 30);

        for s in self.log.iter().rev() {
            output.push_str(s)
        }

        output
    }

    fn log_line<F, S>(&mut self, level: usize, f: F)
    where
        S: AsRef<str>,
        F: FnOnce() -> S,
    {
        if Self::log_enabled() {
            self.log
                .push(format!("{:indent$}{}\n", "", f().as_ref(), indent = level * 2));
        }
    }
}