1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use super::{
    helpers::{parsing_catch_all, Pair},
    parse_arguments::parse_arguments_list,
    Rule,
};
use crate::ast::*;
use diagnostics::{DatamodelError, Diagnostics};

pub(crate) fn parse_expression(token: Pair<'_>, diagnostics: &mut diagnostics::Diagnostics) -> Expression {
    let first_child = token.into_inner().next().unwrap();
    let span = Span::from(first_child.as_span());
    match first_child.as_rule() {
        Rule::numeric_literal => Expression::NumericValue(first_child.as_str().to_string(), span),
        Rule::string_literal => Expression::StringValue(parse_string_literal(first_child, diagnostics), span),
        Rule::path => Expression::ConstantValue(first_child.as_str().to_string(), span),
        Rule::function_call => parse_function(first_child, diagnostics),
        Rule::array_expression => parse_array(first_child, diagnostics),
        _ => unreachable!(
            "Encountered impossible literal during parsing: {:?}",
            first_child.tokens()
        ),
    }
}

fn parse_function(pair: Pair<'_>, diagnostics: &mut Diagnostics) -> Expression {
    let mut name: Option<String> = None;
    let mut arguments = ArgumentsList::default();
    let (pair_str, span) = (pair.as_str(), pair.as_span());

    for current in pair.into_inner() {
        match current.as_rule() {
            Rule::path => name = Some(current.as_str().to_string()),
            Rule::arguments_list => parse_arguments_list(current, &mut arguments, diagnostics),
            _ => parsing_catch_all(&current, "function"),
        }
    }

    match name {
        Some(name) => Expression::Function(name, arguments, Span::from(span)),
        _ => unreachable!("Encountered impossible function during parsing: {:?}", pair_str),
    }
}

fn parse_array(token: Pair<'_>, diagnostics: &mut Diagnostics) -> Expression {
    let mut elements: Vec<Expression> = vec![];
    let span = token.as_span();

    for current in token.into_inner() {
        match current.as_rule() {
            Rule::expression => elements.push(parse_expression(current, diagnostics)),
            _ => parsing_catch_all(&current, "array"),
        }
    }

    Expression::Array(elements, Span::from(span))
}

fn parse_string_literal(token: Pair<'_>, diagnostics: &mut Diagnostics) -> String {
    assert!(token.as_rule() == Rule::string_literal);
    let contents = token.clone().into_inner().next().unwrap();
    let contents_str = contents.as_str();

    // This will overallocate a bit for strings with escaped characters, but it
    // shouldn't make a dramatic difference.
    let mut out = String::with_capacity(contents_str.len());
    let mut chars = contents_str.char_indices();

    // https://datatracker.ietf.org/doc/html/rfc8259#section-7
    while let Some((start, c)) = chars.next() {
        match c {
            '\\' => match chars.next().unwrap() {
                (_, '"') => {
                    out.push('"');
                }
                (_, '\\') => {
                    out.push('\\');
                }
                (_, '/') => {
                    out.push('/');
                }
                (_, 'b') => {
                    out.push('\u{0008}');
                }
                (_, 'f') => {
                    out.push('\u{000C}');
                }
                (_, 'n') => {
                    out.push('\n');
                }
                (_, 'r') => {
                    out.push('\r');
                }
                (_, 't') => {
                    out.push('\t');
                }
                (_, 'u') => {
                    let (advance, char) = try_parse_unicode_codepoint(
                        &contents_str[start..],
                        contents.as_span().start() + start,
                        diagnostics,
                    );

                    if let Some(char) = char {
                        out.push(char);
                    }

                    for _ in 0..advance.saturating_sub(2) {
                        chars.next().unwrap();
                    }
                }
                (_, c) => {
                    let mut final_span: crate::ast::Span = contents.as_span().into();
                    final_span.start += start;
                    final_span.end = final_span.start + 1 + c.len_utf8();
                    diagnostics.push_error(DatamodelError::new_static(
                        r"Unknown escape sequence. If the value is a windows-style path, `\` must be escaped as `\\`.",
                        final_span,
                    ));
                }
            },
            other => out.push(other),
        }
    }

    out
}

/// https://datatracker.ietf.org/doc/html/rfc8259#section-7
///
/// Returns the parsed character and how much input (in bytes) was consumed.
fn try_parse_unicode_codepoint(
    slice: &str,
    slice_offset: usize,
    diagnostics: &mut Diagnostics,
) -> (usize, Option<char>) {
    let unicode_sequence_error = |consumed| {
        let span = crate::ast::Span {
            start: slice_offset,
            end: (slice_offset + slice.len()).min(slice_offset + consumed),
        };
        DatamodelError::new_static("Invalid unicode escape sequence.", span)
    };

    match parse_codepoint(slice) {
        (consumed, None) => {
            diagnostics.push_error(unicode_sequence_error(consumed.max(2)));
            (consumed, None)
        }
        (consumed_first_codepoint, Some(first_codepoint)) => {
            // Check if the first codepoint is a valid UTF-8 codepoint. UTF-16 surrogate sequences
            // are not valid UTF-8, so we can do this safely.
            if let Some(c) = char::from_u32(first_codepoint.into()) {
                return (6, Some(c));
            }

            // If that doesn't work, try parsing a second codepoint, and treat the first one as a
            // UTF-16 surrogate pair.
            match parse_codepoint(&slice[6..]) {
                (_, None) => {
                    diagnostics.push_error(unicode_sequence_error(consumed_first_codepoint));
                    (consumed_first_codepoint, None)
                }
                (consumed_second_codepoint, Some(second_codepoint)) => {
                    // UTF-16 surrogate with
                    let char = match char::decode_utf16([first_codepoint, second_codepoint]).next() {
                        Some(Ok(c)) => Some(c),
                        _ => {
                            diagnostics.push_error(unicode_sequence_error(
                                consumed_first_codepoint + consumed_second_codepoint,
                            ));
                            None
                        }
                    };

                    (consumed_first_codepoint * 2, char)
                }
            }
        }
    }
}

fn parse_codepoint(slice: &str) -> (usize, Option<u16>) {
    if slice.len() < 4 || !slice.starts_with("\\u") {
        return (0, None);
    }

    let mut chars = slice[2..].chars();
    let mut codepoint = 0u16;

    // four nibbles (4 bit integers)
    for i in 0u8..4 {
        let nibble_offset = 3 - i;
        match chars.next().and_then(|c| c.to_digit(16)) {
            Some(nibble) => {
                codepoint += (nibble as u16) << (nibble_offset * 4);
            }
            None => return (2 + i as usize, None),
        }
    }

    (6, Some(codepoint))
}