1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//! High-performance metrics storage.

mod storage;
use std::{hash::BuildHasherDefault, iter::repeat};

use hashbrown::{hash_map::RawEntryMut, HashMap};
use metrics::{Key, KeyHasher};
use parking_lot::RwLock;
pub use storage::{AtomicStorage, Storage};

#[cfg(feature = "recency")]
mod recency;

#[cfg(feature = "recency")]
pub use recency::{
    Generation, Generational, GenerationalAtomicStorage, GenerationalStorage, Recency,
};

use crate::Hashable;

type RegistryHasher = KeyHasher;
type RegistryHashMap<K, V> = HashMap<K, V, BuildHasherDefault<RegistryHasher>>;

/// A high-performance metric registry.
///
/// `Registry` provides the ability to maintain a central listing of metrics mapped by a given key.
/// Metrics themselves are stored in the objects returned by `S`.
///
/// ## Using `Registry` as the basis of an exporter
///
/// As a reusable building blocking for building exporter implementations, users should look at
/// [`Key`] and [`AtomicStorage`][crate::registry::AtomicStorage] to use for their key and storage,
/// respectively.
///
/// These two implementations provide behavior that is suitable for most exporters, providing
/// seamless integration with the existing key type used by the core
/// [`Recorder`][metrics::Recorder] trait, as well as atomic storage for metrics.
///
/// In some cases, users may prefer
/// [`GenerationalAtomicStorage`][crate::registry::GenerationalAtomicStorage] when know if a metric
/// has been touched, even if its value has not changed since the last time it was observed, is
/// necessary.
///
/// ## Performance
///
/// `Registry` is optimized for reads.
pub struct Registry<K, S>
where
    K: Hashable,
    S: Storage<K>,
{
    counters: Vec<RwLock<RegistryHashMap<K, S::Counter>>>,
    gauges: Vec<RwLock<RegistryHashMap<K, S::Gauge>>>,
    histograms: Vec<RwLock<RegistryHashMap<K, S::Histogram>>>,
    shard_mask: usize,
    storage: S,
}

impl Registry<Key, AtomicStorage> {
    /// Creates a new `Registry` using a regular [`Key`] and atomic storage.
    pub fn atomic() -> Self {
        let shard_count = std::cmp::max(1, num_cpus::get()).next_power_of_two();
        let shard_mask = shard_count - 1;
        let counters =
            repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
        let gauges =
            repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
        let histograms =
            repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();

        Self { counters, gauges, histograms, shard_mask, storage: AtomicStorage }
    }
}

impl<K, S> Registry<K, S>
where
    K: Clone + Eq + Hashable,
    S: Storage<K>,
{
    /// Creates a new `Registry`.
    pub fn new(storage: S) -> Self {
        let shard_count = std::cmp::max(1, num_cpus::get()).next_power_of_two();
        let shard_mask = shard_count - 1;
        let counters =
            repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
        let gauges =
            repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
        let histograms =
            repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();

        Self { counters, gauges, histograms, shard_mask, storage }
    }

    #[inline]
    fn get_hash_and_shard_for_counter(
        &self,
        key: &K,
    ) -> (u64, &RwLock<RegistryHashMap<K, S::Counter>>) {
        let hash = key.hashable();

        // SAFETY: We initialize vector of subshards with a power-of-two value, and
        // `self.shard_mask` is `self.counters.len() - 1`, thus we can never have a result from the
        // masking operation that results in a value which is not in bounds of our subshards vector.
        let shard = unsafe { self.counters.get_unchecked(hash as usize & self.shard_mask) };

        (hash, shard)
    }

    #[inline]
    fn get_hash_and_shard_for_gauge(
        &self,
        key: &K,
    ) -> (u64, &RwLock<RegistryHashMap<K, S::Gauge>>) {
        let hash = key.hashable();

        // SAFETY: We initialize the vector of subshards with a power-of-two value, and
        // `self.shard_mask` is `self.gauges.len() - 1`, thus we can never have a result from the
        // masking operation that results in a value which is not in bounds of our subshards vector.
        let shard = unsafe { self.gauges.get_unchecked(hash as usize & self.shard_mask) };

        (hash, shard)
    }

    #[inline]
    fn get_hash_and_shard_for_histogram(
        &self,
        key: &K,
    ) -> (u64, &RwLock<RegistryHashMap<K, S::Histogram>>) {
        let hash = key.hashable();

        // SAFETY: We initialize the vector of subshards with a power-of-two value, and
        // `self.shard_mask` is `self.histograms.len() - 1`, thus we can never have a result from
        // the masking operation that results in a value which is not in bounds of our subshards
        // vector.
        let shard = unsafe { self.histograms.get_unchecked(hash as usize & self.shard_mask) };

        (hash, shard)
    }

    /// Removes all metrics from the registry.
    ///
    /// This operation is eventually consistent: metrics will be removed piecemeal, and this method
    /// does not ensure that callers will see the registry as entirely empty at any given point.
    pub fn clear(&self) {
        for shard in &self.counters {
            shard.write().clear();
        }
        for shard in &self.gauges {
            shard.write().clear();
        }
        for shard in &self.histograms {
            shard.write().clear();
        }
    }

    /// Gets or creates the given counter.
    ///
    /// The `op` function will be called for the counter under the given `key`, with the counter
    /// first being created if it does not already exist.
    pub fn get_or_create_counter<O, V>(&self, key: &K, op: O) -> V
    where
        O: FnOnce(&S::Counter) -> V,
    {
        let (hash, shard) = self.get_hash_and_shard_for_counter(key);

        // Try and get the handle if it exists, running our operation if we succeed.
        let shard_read = shard.read();
        if let Some((_, v)) = shard_read.raw_entry().from_key_hashed_nocheck(hash, key) {
            op(v)
        } else {
            // Switch to write guard and insert the handle first.
            drop(shard_read);
            let mut shard_write = shard.write();
            let v = if let Some((_, v)) = shard_write.raw_entry().from_key_hashed_nocheck(hash, key)
            {
                v
            } else {
                let (_, v) = shard_write
                    .raw_entry_mut()
                    .from_key_hashed_nocheck(hash, key)
                    .or_insert_with(|| (key.clone(), self.storage.counter(key)));

                v
            };

            op(v)
        }
    }

    /// Gets or creates the given gauge.
    ///
    /// The `op` function will be called for the gauge under the given `key`, with the gauge
    /// first being created if it does not already exist.
    pub fn get_or_create_gauge<O, V>(&self, key: &K, op: O) -> V
    where
        O: FnOnce(&S::Gauge) -> V,
    {
        let (hash, shard) = self.get_hash_and_shard_for_gauge(key);

        // Try and get the handle if it exists, running our operation if we succeed.
        let shard_read = shard.read();
        if let Some((_, v)) = shard_read.raw_entry().from_key_hashed_nocheck(hash, key) {
            op(v)
        } else {
            // Switch to write guard and insert the handle first.
            drop(shard_read);
            let mut shard_write = shard.write();
            let v = if let Some((_, v)) = shard_write.raw_entry().from_key_hashed_nocheck(hash, key)
            {
                v
            } else {
                let (_, v) = shard_write
                    .raw_entry_mut()
                    .from_key_hashed_nocheck(hash, key)
                    .or_insert_with(|| (key.clone(), self.storage.gauge(key)));

                v
            };

            op(v)
        }
    }

    /// Gets or creates the given histogram.
    ///
    /// The `op` function will be called for the histogram under the given `key`, with the histogram
    /// first being created if it does not already exist.
    pub fn get_or_create_histogram<O, V>(&self, key: &K, op: O) -> V
    where
        O: FnOnce(&S::Histogram) -> V,
    {
        let (hash, shard) = self.get_hash_and_shard_for_histogram(key);

        // Try and get the handle if it exists, running our operation if we succeed.
        let shard_read = shard.read();
        if let Some((_, v)) = shard_read.raw_entry().from_key_hashed_nocheck(hash, key) {
            op(v)
        } else {
            // Switch to write guard and insert the handle first.
            drop(shard_read);
            let mut shard_write = shard.write();
            let v = if let Some((_, v)) = shard_write.raw_entry().from_key_hashed_nocheck(hash, key)
            {
                v
            } else {
                let (_, v) = shard_write
                    .raw_entry_mut()
                    .from_key_hashed_nocheck(hash, key)
                    .or_insert_with(|| (key.clone(), self.storage.histogram(key)));

                v
            };

            op(v)
        }
    }

    /// Deletes a counter from the registry.
    ///
    /// Returns `true` if the counter existed and was removed, `false` otherwise.
    pub fn delete_counter(&self, key: &K) -> bool {
        let (hash, shard) = self.get_hash_and_shard_for_counter(key);
        let mut shard_write = shard.write();
        let entry = shard_write.raw_entry_mut().from_key_hashed_nocheck(hash, key);
        if let RawEntryMut::Occupied(entry) = entry {
            let _ = entry.remove_entry();
            return true;
        }

        false
    }

    /// Deletes a gauge from the registry.
    ///
    /// Returns `true` if the gauge existed and was removed, `false` otherwise.
    pub fn delete_gauge(&self, key: &K) -> bool {
        let (hash, shard) = self.get_hash_and_shard_for_gauge(key);
        let mut shard_write = shard.write();
        let entry = shard_write.raw_entry_mut().from_key_hashed_nocheck(hash, key);
        if let RawEntryMut::Occupied(entry) = entry {
            let _ = entry.remove_entry();
            return true;
        }

        false
    }

    /// Deletes a histogram from the registry.
    ///
    /// Returns `true` if the histogram existed and was removed, `false` otherwise.
    pub fn delete_histogram(&self, key: &K) -> bool {
        let (hash, shard) = self.get_hash_and_shard_for_histogram(key);
        let mut shard_write = shard.write();
        let entry = shard_write.raw_entry_mut().from_key_hashed_nocheck(hash, key);
        if let RawEntryMut::Occupied(entry) = entry {
            let _ = entry.remove_entry();
            return true;
        }

        false
    }

    /// Visits every counter stored in this registry.
    ///
    /// This operation does not lock the entire registry, but proceeds directly through the
    /// "subshards" that are kept internally.  As a result, all subshards will be visited, but a
    /// metric that existed at the exact moment that `visit_counters` was called may not actually be observed
    /// if it is deleted before that subshard is reached.  Likewise, a metric that is added after
    /// the call to `visit_counters`, but before `visit_counters` finishes, may also not be observed.
    pub fn visit_counters<F>(&self, mut collect: F)
    where
        F: FnMut(&K, &S::Counter),
    {
        for subshard in self.counters.iter() {
            let shard_read = subshard.read();
            for (key, counter) in shard_read.iter() {
                collect(key, counter);
            }
        }
    }

    /// Visits every gauge stored in this registry.
    ///
    /// This operation does not lock the entire registry, but proceeds directly through the
    /// "subshards" that are kept internally.  As a result, all subshards will be visited, but a
    /// metric that existed at the exact moment that `visit_gauges` was called may not actually be observed
    /// if it is deleted before that subshard is reached.  Likewise, a metric that is added after
    /// the call to `visit_gauges`, but before `visit_gauges` finishes, may also not be observed.
    pub fn visit_gauges<F>(&self, mut collect: F)
    where
        F: FnMut(&K, &S::Gauge),
    {
        for subshard in self.gauges.iter() {
            let shard_read = subshard.read();
            for (key, gauge) in shard_read.iter() {
                collect(key, gauge);
            }
        }
    }

    /// Visits every histogram stored in this registry.
    ///
    /// This operation does not lock the entire registry, but proceeds directly through the
    /// "subshards" that are kept internally.  As a result, all subshards will be visited, but a
    /// metric that existed at the exact moment that `visit_histograms` was called may not actually be observed
    /// if it is deleted before that subshard is reached.  Likewise, a metric that is added after
    /// the call to `visit_histograms`, but before `visit_histograms` finishes, may also not be observed.
    pub fn visit_histograms<F>(&self, mut collect: F)
    where
        F: FnMut(&K, &S::Histogram),
    {
        for subshard in self.histograms.iter() {
            let shard_read = subshard.read();
            for (key, histogram) in shard_read.iter() {
                collect(key, histogram);
            }
        }
    }

    /// Gets a map of all present counters, mapped by key.
    ///
    /// This map is a point-in-time snapshot of the registry.
    pub fn get_counter_handles(&self) -> HashMap<K, S::Counter> {
        let mut counters = HashMap::new();
        self.visit_counters(|k, v| {
            counters.insert(k.clone(), v.clone());
        });
        counters
    }

    /// Gets a map of all present gauges, mapped by key.
    ///
    /// This map is a point-in-time snapshot of the registry.
    pub fn get_gauge_handles(&self) -> HashMap<K, S::Gauge> {
        let mut gauges = HashMap::new();
        self.visit_gauges(|k, v| {
            gauges.insert(k.clone(), v.clone());
        });
        gauges
    }

    /// Gets a map of all present histograms, mapped by key.
    ///
    /// This map is a point-in-time snapshot of the registry.
    pub fn get_histogram_handles(&self) -> HashMap<K, S::Histogram> {
        let mut histograms = HashMap::new();
        self.visit_histograms(|k, v| {
            histograms.insert(k.clone(), v.clone());
        });
        histograms
    }
}

#[cfg(test)]
mod tests {
    use atomic_shim::AtomicU64;
    use metrics::{CounterFn, Key};

    use super::Registry;
    use std::sync::{atomic::Ordering, Arc};

    #[test]
    fn test_registry() {
        let registry = Registry::atomic();
        let key = Key::from_name("foobar");

        let entries = registry.get_counter_handles();
        assert_eq!(entries.len(), 0);

        registry.get_or_create_counter(&key, |c: &Arc<AtomicU64>| c.increment(1));

        let initial_entries = registry.get_counter_handles();
        assert_eq!(initial_entries.len(), 1);

        let initial_entry: (Key, Arc<AtomicU64>) =
            initial_entries.into_iter().next().expect("failed to get first entry");

        let (ikey, ivalue) = initial_entry;
        assert_eq!(ikey, key);
        assert_eq!(ivalue.load(Ordering::SeqCst), 1);

        registry.get_or_create_counter(&key, |c: &Arc<AtomicU64>| c.increment(1));

        let updated_entries = registry.get_counter_handles();
        assert_eq!(updated_entries.len(), 1);

        let updated_entry: (Key, Arc<AtomicU64>) =
            updated_entries.into_iter().next().expect("failed to get updated entry");

        let (ukey, uvalue) = updated_entry;
        assert_eq!(ukey, key);
        assert_eq!(uvalue.load(Ordering::SeqCst), 2);

        assert!(registry.delete_counter(&key));

        let entries = registry.get_counter_handles();
        assert_eq!(entries.len(), 0);
    }
}