1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
use std::{
    sync::{
        atomic::{AtomicU32, Ordering},
        Arc,
    },
    time::{Duration, Instant},
};

use bson::doc;
use lazy_static::lazy_static;
use tokio::sync::watch;

use super::{
    description::server::{ServerDescription, TopologyVersion},
    topology::{SdamEventEmitter, TopologyCheckRequestReceiver},
    TopologyUpdater,
    TopologyWatcher,
};
use crate::{
    cmap::{establish::ConnectionEstablisher, Connection},
    error::{Error, Result},
    event::sdam::{
        SdamEvent,
        ServerHeartbeatFailedEvent,
        ServerHeartbeatStartedEvent,
        ServerHeartbeatSucceededEvent,
    },
    hello::{hello_command, run_hello, AwaitableHelloOptions, HelloReply},
    options::{ClientOptions, ServerAddress},
    runtime::{self, stream::DEFAULT_CONNECT_TIMEOUT, WorkerHandle, WorkerHandleListener},
};

fn next_monitoring_connection_id() -> u32 {
    lazy_static! {
        static ref MONITORING_CONNECTION_ID: AtomicU32 = AtomicU32::new(0);
    }
    MONITORING_CONNECTION_ID.fetch_add(1, Ordering::SeqCst)
}

pub(crate) const DEFAULT_HEARTBEAT_FREQUENCY: Duration = Duration::from_secs(10);
pub(crate) const MIN_HEARTBEAT_FREQUENCY: Duration = Duration::from_millis(500);

/// Monitor that performs regular heartbeats to determine server status.
pub(crate) struct Monitor {
    address: ServerAddress,
    connection: Option<Connection>,
    connection_establisher: ConnectionEstablisher,
    topology_updater: TopologyUpdater,
    topology_watcher: TopologyWatcher,
    sdam_event_emitter: Option<SdamEventEmitter>,
    client_options: ClientOptions,

    /// The most recent topology version returned by the server in a hello response.
    /// If some, indicates that this monitor should use the streaming protocol. If none, it should
    /// use the polling protocol.
    topology_version: Option<TopologyVersion>,

    /// Handle to the RTT monitor, used to get the latest known round trip time for a given server
    /// and to reset the RTT when the monitor disconnects from the server.
    rtt_monitor_handle: RttMonitorHandle,

    /// Handle to the `Server` instance in the `Topology`. This is used to detect when a server has
    /// been removed from the topology and no longer needs to be monitored and to receive
    /// cancellation requests.
    request_receiver: MonitorRequestReceiver,
}

impl Monitor {
    pub(crate) fn start(
        address: ServerAddress,
        topology_updater: TopologyUpdater,
        topology_watcher: TopologyWatcher,
        sdam_event_emitter: Option<SdamEventEmitter>,
        manager_receiver: MonitorRequestReceiver,
        client_options: ClientOptions,
        connection_establisher: ConnectionEstablisher,
    ) {
        let (rtt_monitor, rtt_monitor_handle) = RttMonitor::new(
            address.clone(),
            topology_watcher.clone(),
            connection_establisher.clone(),
            client_options.clone(),
        );
        let monitor = Self {
            address,
            client_options,
            connection_establisher,
            topology_updater,
            topology_watcher,
            sdam_event_emitter,
            rtt_monitor_handle,
            request_receiver: manager_receiver,
            connection: None,
            topology_version: None,
        };

        runtime::execute(monitor.execute());
        runtime::execute(rtt_monitor.execute());
    }

    async fn execute(mut self) {
        let heartbeat_frequency = self.heartbeat_frequency();

        while self.is_alive() {
            let check_succeeded = self.check_server().await;

            // In the streaming protocol, we read from the socket continuously
            // rather than polling at specific intervals, unless the most recent check
            // failed.
            //
            // We only go to sleep when using the polling protocol (i.e. server never returned a
            // topologyVersion) or when the most recent check failed.
            if self.topology_version.is_none() || !check_succeeded {
                self.request_receiver
                    .wait_for_check_request(
                        self.client_options.min_heartbeat_frequency(),
                        heartbeat_frequency,
                    )
                    .await;
            }
        }
    }

    fn is_alive(&self) -> bool {
        self.request_receiver.is_alive()
    }

    /// Checks the the server by running a hello command. If an I/O error occurs, the
    /// connection will replaced with a new one.
    ///
    /// Returns whether the check succeeded or not.
    async fn check_server(&mut self) -> bool {
        let check_result = match self.perform_hello().await {
            HelloResult::Err(e) => {
                let previous_description = self.topology_watcher.server_description(&self.address);
                if e.is_network_error()
                    && previous_description
                        .map(|sd| sd.is_available())
                        .unwrap_or(false)
                {
                    self.handle_error(e).await;
                    self.perform_hello().await
                } else {
                    HelloResult::Err(e)
                }
            }
            other => other,
        };

        match check_result {
            HelloResult::Ok(reply) => {
                let avg_rtt = self.rtt_monitor_handle.average_rtt();

                // If we have an Ok result, then we at least performed a handshake, which should
                // mean that the RTT has a value.
                debug_assert!(avg_rtt.is_some());

                // In the event that we don't have an average RTT value (e.g. due to a bug), just
                // default to using the maximum possible value.
                let avg_rtt = avg_rtt.unwrap_or(Duration::MAX);

                let server_description =
                    ServerDescription::new_from_hello_reply(self.address.clone(), reply, avg_rtt);
                self.topology_updater.update(server_description).await;
                true
            }
            HelloResult::Err(e) => {
                self.handle_error(e).await;
                false
            }
            HelloResult::Cancelled { .. } => false,
        }
    }

    async fn perform_hello(&mut self) -> HelloResult {
        let driver_connection_id = self
            .connection
            .as_ref()
            .map(|c| c.id)
            .unwrap_or(next_monitoring_connection_id());

        self.emit_event(|| {
            SdamEvent::ServerHeartbeatStarted(ServerHeartbeatStartedEvent {
                server_address: self.address.clone(),
                awaited: self.topology_version.is_some(),
                driver_connection_id,
                server_connection_id: self.connection.as_ref().and_then(|c| c.server_id),
            })
        });

        let heartbeat_frequency = self.heartbeat_frequency();
        let timeout = if self.connect_timeout().is_zero() {
            // If connectTimeoutMS = 0, then the socket timeout for monitoring is unlimited.
            Duration::MAX
        } else if self.topology_version.is_some() {
            // For streaming responses, use connectTimeoutMS + heartbeatFrequencyMS for socket
            // timeout.
            heartbeat_frequency
                .checked_add(self.connect_timeout())
                .unwrap_or(Duration::MAX)
        } else {
            // Otherwise, just use connectTimeoutMS.
            self.connect_timeout()
        };

        let execute_hello = async {
            match self.connection {
                Some(ref mut conn) => {
                    // If the server indicated there was moreToCome, just read from the socket.
                    if conn.is_streaming() {
                        conn.receive_message()
                            .await
                            .and_then(|r| r.into_hello_reply())
                    // Otherwise, send a regular hello command.
                    } else {
                        // If the initial handshake returned a topology version, send it back to the
                        // server to begin streaming responses.
                        let opts = self.topology_version.map(|tv| AwaitableHelloOptions {
                            topology_version: tv,
                            max_await_time: heartbeat_frequency,
                        });

                        let command = hello_command(
                            self.client_options.server_api.as_ref(),
                            self.client_options.load_balanced,
                            Some(conn.stream_description()?.hello_ok),
                            opts,
                        );

                        run_hello(conn, command).await
                    }
                }
                None => {
                    let start = Instant::now();
                    let res = self
                        .connection_establisher
                        .establish_monitoring_connection(self.address.clone(), driver_connection_id)
                        .await;
                    match res {
                        Ok((conn, hello_reply)) => {
                            self.rtt_monitor_handle.add_sample(start.elapsed());
                            self.connection = Some(conn);
                            Ok(hello_reply)
                        }
                        Err(e) => Err(e),
                    }
                }
            }
        };

        // Execute the hello while also listening for cancellation and keeping track of the timeout.
        let start = Instant::now();
        let result = tokio::select! {
            result = execute_hello => match result {
                Ok(reply) => HelloResult::Ok(reply),
                Err(e) => HelloResult::Err(e)
            },
            r = self.request_receiver.wait_for_cancellation() => {
                let reason_error = match r {
                    CancellationReason::Error(e) => e,
                    CancellationReason::ServerClosed => Error::internal("server closed")
                };
                HelloResult::Cancelled { reason: reason_error }
            }
            _ = runtime::delay_for(timeout) => {
                HelloResult::Err(Error::network_timeout())
            }
        };
        let duration = start.elapsed();

        match result {
            HelloResult::Ok(ref r) => {
                self.emit_event(|| {
                    let mut reply = r
                        .raw_command_response
                        .to_document()
                        .unwrap_or_else(|e| doc! { "deserialization error": e.to_string() });
                    // if this hello call is part of a handshake, remove speculative authentication
                    // information before publishing an event
                    reply.remove("speculativeAuthenticate");
                    SdamEvent::ServerHeartbeatSucceeded(ServerHeartbeatSucceededEvent {
                        duration,
                        reply,
                        server_address: self.address.clone(),
                        awaited: self.topology_version.is_some(),
                        driver_connection_id,
                        server_connection_id: self.connection.as_ref().and_then(|c| c.server_id),
                    })
                });

                // If the response included a topology version, cache it so that we can return it in
                // the next hello.
                self.topology_version = r.command_response.topology_version;
            }
            HelloResult::Err(ref e) | HelloResult::Cancelled { reason: ref e } => {
                self.emit_event(|| {
                    SdamEvent::ServerHeartbeatFailed(ServerHeartbeatFailedEvent {
                        duration,
                        failure: e.clone(),
                        server_address: self.address.clone(),
                        awaited: self.topology_version.is_some(),
                        driver_connection_id,
                        server_connection_id: self.connection.as_ref().and_then(|c| c.server_id),
                    })
                });

                // Per the spec, cancelled requests and errors both require the monitoring
                // connection to be closed.
                self.connection = None;
                self.rtt_monitor_handle.reset_average_rtt();
                self.topology_version.take();
            }
        }

        result
    }

    async fn handle_error(&mut self, error: Error) -> bool {
        self.topology_updater
            .handle_monitor_error(self.address.clone(), error)
            .await
    }

    fn emit_event<F>(&self, event: F)
    where
        F: FnOnce() -> SdamEvent,
    {
        if let Some(ref emitter) = self.sdam_event_emitter {
            // We don't care about ordering or waiting for the event to have been received.
            #[allow(clippy::let_underscore_future)]
            let _ = emitter.emit(event());
        }
    }

    fn connect_timeout(&self) -> Duration {
        self.client_options
            .connect_timeout
            .unwrap_or(DEFAULT_CONNECT_TIMEOUT)
    }

    fn heartbeat_frequency(&self) -> Duration {
        self.client_options
            .heartbeat_freq
            .unwrap_or(DEFAULT_HEARTBEAT_FREQUENCY)
    }
}

/// The monitor used for tracking the round-trip-time to the server, as described in the SDAM spec.
/// This monitor uses its own connection to make RTT measurements, and it publishes the averages of
/// those measurements to a channel.
struct RttMonitor {
    sender: Arc<watch::Sender<RttInfo>>,
    connection: Option<Connection>,
    topology: TopologyWatcher,
    address: ServerAddress,
    client_options: ClientOptions,
    connection_establisher: ConnectionEstablisher,
}

#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct RttInfo {
    pub(crate) average: Option<Duration>,
}

impl RttInfo {
    pub(crate) fn add_sample(&mut self, sample: Duration) {
        match self.average {
            Some(old_rtt) => {
                // Average is 20% most recent sample and 80% prior sample.
                self.average = Some((sample / 5) + (old_rtt * 4 / 5))
            }
            None => self.average = Some(sample),
        }
    }
}

impl RttMonitor {
    /// Creates a new RTT monitor for the server at the given address, returning a receiver that the
    /// RTT statistics will be published to. This does not start the monitor.
    /// [`RttMonitor::execute`] needs to be invoked to start it.
    fn new(
        address: ServerAddress,
        topology: TopologyWatcher,
        connection_establisher: ConnectionEstablisher,
        client_options: ClientOptions,
    ) -> (Self, RttMonitorHandle) {
        let (sender, rtt_receiver) = watch::channel(RttInfo { average: None });
        let sender = Arc::new(sender);

        let monitor = Self {
            address,
            connection: None,
            topology,
            client_options,
            connection_establisher,
            sender: sender.clone(),
        };

        let handle = RttMonitorHandle {
            reset_sender: sender,
            rtt_receiver,
        };
        (monitor, handle)
    }

    async fn execute(mut self) {
        // keep executing until either the topology is closed or server monitor is done (i.e. the
        // sender is closed)
        while self.topology.is_alive() && !self.sender.is_closed() {
            let timeout = self
                .client_options
                .connect_timeout
                .unwrap_or(DEFAULT_CONNECT_TIMEOUT);

            let perform_check = async {
                match self.connection {
                    Some(ref mut conn) => {
                        let command = hello_command(
                            self.client_options.server_api.as_ref(),
                            self.client_options.load_balanced,
                            Some(conn.stream_description()?.hello_ok),
                            None,
                        );
                        conn.send_command(command, None).await?;
                    }
                    None => {
                        let connection = self
                            .connection_establisher
                            .establish_monitoring_connection(
                                self.address.clone(),
                                next_monitoring_connection_id(),
                            )
                            .await?
                            .0;
                        self.connection = Some(connection);
                    }
                };
                Result::Ok(())
            };

            let start = Instant::now();
            let check_succeded = tokio::select! {
                r = perform_check => r.is_ok(),
                _ = runtime::delay_for(timeout) => {
                    false
                }
            };

            if check_succeded {
                self.sender
                    .send_modify(|rtt_info| rtt_info.add_sample(start.elapsed()));
            } else {
                // From the SDAM spec: "Errors encountered when running a hello or legacy hello
                // command MUST NOT update the topology."
                self.connection = None;

                // Also from the SDAM spec: "Don't call reset() here. The Monitor thread is
                // responsible for resetting the average RTT."
            }

            runtime::delay_for(
                self.client_options
                    .heartbeat_freq
                    .unwrap_or(DEFAULT_HEARTBEAT_FREQUENCY),
            )
            .await;
        }
    }
}

struct RttMonitorHandle {
    rtt_receiver: watch::Receiver<RttInfo>,
    reset_sender: Arc<watch::Sender<RttInfo>>,
}

impl RttMonitorHandle {
    fn average_rtt(&self) -> Option<Duration> {
        self.rtt_receiver.borrow().average
    }

    fn reset_average_rtt(&mut self) {
        let _ = self.reset_sender.send(RttInfo::default());
    }

    fn add_sample(&mut self, sample: Duration) {
        self.reset_sender.send_modify(|rtt_info| {
            rtt_info.add_sample(sample);
        });
    }
}

#[allow(clippy::large_enum_variant)] // The Ok branch is bigger but more common
#[derive(Debug, Clone)]
enum HelloResult {
    Ok(HelloReply),
    Err(Error),
    Cancelled { reason: Error },
}

/// Struct used to keep a monitor alive, individually request an immediate check, and to cancel
/// in-progress checks.
#[derive(Debug, Clone)]
pub(crate) struct MonitorManager {
    /// `WorkerHandle` used to keep the monitor alive. When this is dropped, the monitor will exit.
    handle: WorkerHandle,

    /// Sender used to cancel in-progress monitor checks and, if the reason is TopologyClosed,
    /// close the monitor.
    cancellation_sender: Arc<watch::Sender<CancellationReason>>,

    /// Sender used to individually request an immediate check from the monitor associated with
    /// this manager.
    check_requester: Arc<watch::Sender<()>>,
}

impl MonitorManager {
    pub(crate) fn new(monitor_handle: WorkerHandle) -> Self {
        // The CancellationReason used as the initial value is just a placeholder. The only receiver
        // that could have seen it is dropped in this scope, and the monitor's receiver will
        // never observe it.
        let (tx, _) = watch::channel(CancellationReason::ServerClosed);
        let check_requester = Arc::new(watch::channel(()).0);

        MonitorManager {
            handle: monitor_handle,
            cancellation_sender: Arc::new(tx),
            check_requester,
        }
    }

    /// Cancel any in progress checks, notify the monitor that it should close, and wait for it to
    /// do so.
    pub(crate) async fn close_monitor(self) {
        drop(self.handle);
        let _ = self
            .cancellation_sender
            .send(CancellationReason::ServerClosed);
        self.cancellation_sender.closed().await;
    }

    /// Cancel any in progress check with the provided reason.
    pub(crate) fn cancel_in_progress_check(&mut self, reason: impl Into<CancellationReason>) {
        let _ = self.cancellation_sender.send(reason.into());
    }

    /// Request an immediate topology check by this monitor. If the monitor is currently performing
    /// a check, this request will be ignored.
    pub(crate) fn request_immediate_check(&mut self) {
        let _ = self.check_requester.send(());
    }
}

/// Struct used to receive cancellation and immediate check requests from various different places.
pub(crate) struct MonitorRequestReceiver {
    /// Handle listener used to determine whether this monitor should continue to execute or not.
    /// The `MonitorManager` owned by the `TopologyWorker` owns the handle that this listener
    /// corresponds to.
    handle_listener: WorkerHandleListener,

    /// Receiver for cancellation requests. These come in when an operation encounters network
    /// errors or when the topology is closed.
    cancellation_receiver: watch::Receiver<CancellationReason>,

    /// Receiver used to listen for immediate check requests sent by the `TopologyWorker` that only
    /// apply to the server associated with the monitor, not for the whole topology.
    individual_check_request_receiver: watch::Receiver<()>,

    /// Receiver used to listen for immediate check requests that were broadcast to the entire
    /// topology by operations attempting to select a server.
    topology_check_request_receiver: TopologyCheckRequestReceiver,
}

#[derive(Debug, Clone)]
pub(crate) enum CancellationReason {
    Error(Error),
    ServerClosed,
}

impl From<Error> for CancellationReason {
    fn from(e: Error) -> Self {
        Self::Error(e)
    }
}

impl MonitorRequestReceiver {
    pub(crate) fn new(
        manager: &MonitorManager,
        topology_check_request_receiver: TopologyCheckRequestReceiver,
        handle_listener: WorkerHandleListener,
    ) -> Self {
        Self {
            handle_listener,
            cancellation_receiver: manager.cancellation_sender.subscribe(),
            individual_check_request_receiver: manager.check_requester.subscribe(),
            topology_check_request_receiver,
        }
    }

    /// Wait for a request to cancel the current in-progress check to come in, returning the reason
    /// for it. Any check requests that are received during this time will be ignored, as per
    /// the spec.
    async fn wait_for_cancellation(&mut self) -> CancellationReason {
        let err = if self.cancellation_receiver.changed().await.is_ok() {
            self.cancellation_receiver.borrow().clone()
        } else {
            CancellationReason::ServerClosed
        };
        // clear out ignored check requests
        self.individual_check_request_receiver.borrow_and_update();
        err
    }

    /// Wait for a request to immediately check the server to be received, guarded by the provided
    /// timeout. If the server associated with this monitor is removed from the topology, this
    /// method will return.
    ///
    /// The `delay` parameter indicates how long this method should wait before listening to
    /// requests. The time spent in the delay counts toward the provided timeout.
    async fn wait_for_check_request(&mut self, delay: Duration, timeout: Duration) {
        let _ = runtime::timeout(timeout, async {
            let wait_for_check_request = async {
                runtime::delay_for(delay).await;
                self.topology_check_request_receiver
                    .wait_for_check_request()
                    .await;
            };
            tokio::pin!(wait_for_check_request);

            loop {
                tokio::select! {
                    _ = self.individual_check_request_receiver.changed() => {
                        break;
                    }
                    _ = &mut wait_for_check_request => {
                        break;
                    }
                    _ = self.handle_listener.wait_for_all_handle_drops() => {
                        // Don't continue waiting after server has been removed from the topology.
                        break;
                    }
                }
            }
        })
        .await;

        // clear out ignored cancellation requests while we were waiting to begin a check
        self.cancellation_receiver.borrow_and_update();
    }

    fn is_alive(&self) -> bool {
        self.handle_listener.is_alive()
    }
}