1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
use std::{
sync::{
atomic::{AtomicU32, Ordering},
Arc,
},
time::{Duration, Instant},
};
use bson::doc;
use lazy_static::lazy_static;
use tokio::sync::watch;
use super::{
description::server::{ServerDescription, TopologyVersion},
topology::{SdamEventEmitter, TopologyCheckRequestReceiver},
TopologyUpdater,
TopologyWatcher,
};
use crate::{
cmap::{establish::ConnectionEstablisher, Connection},
error::{Error, Result},
event::sdam::{
SdamEvent,
ServerHeartbeatFailedEvent,
ServerHeartbeatStartedEvent,
ServerHeartbeatSucceededEvent,
},
hello::{hello_command, run_hello, AwaitableHelloOptions, HelloReply},
options::{ClientOptions, ServerAddress},
runtime::{self, stream::DEFAULT_CONNECT_TIMEOUT, WorkerHandle, WorkerHandleListener},
};
fn next_monitoring_connection_id() -> u32 {
lazy_static! {
static ref MONITORING_CONNECTION_ID: AtomicU32 = AtomicU32::new(0);
}
MONITORING_CONNECTION_ID.fetch_add(1, Ordering::SeqCst)
}
pub(crate) const DEFAULT_HEARTBEAT_FREQUENCY: Duration = Duration::from_secs(10);
pub(crate) const MIN_HEARTBEAT_FREQUENCY: Duration = Duration::from_millis(500);
/// Monitor that performs regular heartbeats to determine server status.
pub(crate) struct Monitor {
address: ServerAddress,
connection: Option<Connection>,
connection_establisher: ConnectionEstablisher,
topology_updater: TopologyUpdater,
topology_watcher: TopologyWatcher,
sdam_event_emitter: Option<SdamEventEmitter>,
client_options: ClientOptions,
/// The most recent topology version returned by the server in a hello response.
/// If some, indicates that this monitor should use the streaming protocol. If none, it should
/// use the polling protocol.
topology_version: Option<TopologyVersion>,
/// Handle to the RTT monitor, used to get the latest known round trip time for a given server
/// and to reset the RTT when the monitor disconnects from the server.
rtt_monitor_handle: RttMonitorHandle,
/// Handle to the `Server` instance in the `Topology`. This is used to detect when a server has
/// been removed from the topology and no longer needs to be monitored and to receive
/// cancellation requests.
request_receiver: MonitorRequestReceiver,
}
impl Monitor {
pub(crate) fn start(
address: ServerAddress,
topology_updater: TopologyUpdater,
topology_watcher: TopologyWatcher,
sdam_event_emitter: Option<SdamEventEmitter>,
manager_receiver: MonitorRequestReceiver,
client_options: ClientOptions,
connection_establisher: ConnectionEstablisher,
) {
let (rtt_monitor, rtt_monitor_handle) = RttMonitor::new(
address.clone(),
topology_watcher.clone(),
connection_establisher.clone(),
client_options.clone(),
);
let monitor = Self {
address,
client_options,
connection_establisher,
topology_updater,
topology_watcher,
sdam_event_emitter,
rtt_monitor_handle,
request_receiver: manager_receiver,
connection: None,
topology_version: None,
};
runtime::execute(monitor.execute());
runtime::execute(rtt_monitor.execute());
}
async fn execute(mut self) {
let heartbeat_frequency = self.heartbeat_frequency();
while self.is_alive() {
let check_succeeded = self.check_server().await;
// In the streaming protocol, we read from the socket continuously
// rather than polling at specific intervals, unless the most recent check
// failed.
//
// We only go to sleep when using the polling protocol (i.e. server never returned a
// topologyVersion) or when the most recent check failed.
if self.topology_version.is_none() || !check_succeeded {
self.request_receiver
.wait_for_check_request(
self.client_options.min_heartbeat_frequency(),
heartbeat_frequency,
)
.await;
}
}
}
fn is_alive(&self) -> bool {
self.request_receiver.is_alive()
}
/// Checks the the server by running a hello command. If an I/O error occurs, the
/// connection will replaced with a new one.
///
/// Returns whether the check succeeded or not.
async fn check_server(&mut self) -> bool {
let check_result = match self.perform_hello().await {
HelloResult::Err(e) => {
let previous_description = self.topology_watcher.server_description(&self.address);
if e.is_network_error()
&& previous_description
.map(|sd| sd.is_available())
.unwrap_or(false)
{
self.handle_error(e).await;
self.perform_hello().await
} else {
HelloResult::Err(e)
}
}
other => other,
};
match check_result {
HelloResult::Ok(reply) => {
let avg_rtt = self.rtt_monitor_handle.average_rtt();
// If we have an Ok result, then we at least performed a handshake, which should
// mean that the RTT has a value.
debug_assert!(avg_rtt.is_some());
// In the event that we don't have an average RTT value (e.g. due to a bug), just
// default to using the maximum possible value.
let avg_rtt = avg_rtt.unwrap_or(Duration::MAX);
let server_description =
ServerDescription::new_from_hello_reply(self.address.clone(), reply, avg_rtt);
self.topology_updater.update(server_description).await;
true
}
HelloResult::Err(e) => {
self.handle_error(e).await;
false
}
HelloResult::Cancelled { .. } => false,
}
}
async fn perform_hello(&mut self) -> HelloResult {
let driver_connection_id = self
.connection
.as_ref()
.map(|c| c.id)
.unwrap_or(next_monitoring_connection_id());
self.emit_event(|| {
SdamEvent::ServerHeartbeatStarted(ServerHeartbeatStartedEvent {
server_address: self.address.clone(),
awaited: self.topology_version.is_some(),
driver_connection_id,
server_connection_id: self.connection.as_ref().and_then(|c| c.server_id),
})
});
let heartbeat_frequency = self.heartbeat_frequency();
let timeout = if self.connect_timeout().is_zero() {
// If connectTimeoutMS = 0, then the socket timeout for monitoring is unlimited.
Duration::MAX
} else if self.topology_version.is_some() {
// For streaming responses, use connectTimeoutMS + heartbeatFrequencyMS for socket
// timeout.
heartbeat_frequency
.checked_add(self.connect_timeout())
.unwrap_or(Duration::MAX)
} else {
// Otherwise, just use connectTimeoutMS.
self.connect_timeout()
};
let execute_hello = async {
match self.connection {
Some(ref mut conn) => {
// If the server indicated there was moreToCome, just read from the socket.
if conn.is_streaming() {
conn.receive_message()
.await
.and_then(|r| r.into_hello_reply())
// Otherwise, send a regular hello command.
} else {
// If the initial handshake returned a topology version, send it back to the
// server to begin streaming responses.
let opts = self.topology_version.map(|tv| AwaitableHelloOptions {
topology_version: tv,
max_await_time: heartbeat_frequency,
});
let command = hello_command(
self.client_options.server_api.as_ref(),
self.client_options.load_balanced,
Some(conn.stream_description()?.hello_ok),
opts,
);
run_hello(conn, command).await
}
}
None => {
let start = Instant::now();
let res = self
.connection_establisher
.establish_monitoring_connection(self.address.clone(), driver_connection_id)
.await;
match res {
Ok((conn, hello_reply)) => {
self.rtt_monitor_handle.add_sample(start.elapsed());
self.connection = Some(conn);
Ok(hello_reply)
}
Err(e) => Err(e),
}
}
}
};
// Execute the hello while also listening for cancellation and keeping track of the timeout.
let start = Instant::now();
let result = tokio::select! {
result = execute_hello => match result {
Ok(reply) => HelloResult::Ok(reply),
Err(e) => HelloResult::Err(e)
},
r = self.request_receiver.wait_for_cancellation() => {
let reason_error = match r {
CancellationReason::Error(e) => e,
CancellationReason::ServerClosed => Error::internal("server closed")
};
HelloResult::Cancelled { reason: reason_error }
}
_ = runtime::delay_for(timeout) => {
HelloResult::Err(Error::network_timeout())
}
};
let duration = start.elapsed();
match result {
HelloResult::Ok(ref r) => {
self.emit_event(|| {
let mut reply = r
.raw_command_response
.to_document()
.unwrap_or_else(|e| doc! { "deserialization error": e.to_string() });
// if this hello call is part of a handshake, remove speculative authentication
// information before publishing an event
reply.remove("speculativeAuthenticate");
SdamEvent::ServerHeartbeatSucceeded(ServerHeartbeatSucceededEvent {
duration,
reply,
server_address: self.address.clone(),
awaited: self.topology_version.is_some(),
driver_connection_id,
server_connection_id: self.connection.as_ref().and_then(|c| c.server_id),
})
});
// If the response included a topology version, cache it so that we can return it in
// the next hello.
self.topology_version = r.command_response.topology_version;
}
HelloResult::Err(ref e) | HelloResult::Cancelled { reason: ref e } => {
self.emit_event(|| {
SdamEvent::ServerHeartbeatFailed(ServerHeartbeatFailedEvent {
duration,
failure: e.clone(),
server_address: self.address.clone(),
awaited: self.topology_version.is_some(),
driver_connection_id,
server_connection_id: self.connection.as_ref().and_then(|c| c.server_id),
})
});
// Per the spec, cancelled requests and errors both require the monitoring
// connection to be closed.
self.connection = None;
self.rtt_monitor_handle.reset_average_rtt();
self.topology_version.take();
}
}
result
}
async fn handle_error(&mut self, error: Error) -> bool {
self.topology_updater
.handle_monitor_error(self.address.clone(), error)
.await
}
fn emit_event<F>(&self, event: F)
where
F: FnOnce() -> SdamEvent,
{
if let Some(ref emitter) = self.sdam_event_emitter {
// We don't care about ordering or waiting for the event to have been received.
#[allow(clippy::let_underscore_future)]
let _ = emitter.emit(event());
}
}
fn connect_timeout(&self) -> Duration {
self.client_options
.connect_timeout
.unwrap_or(DEFAULT_CONNECT_TIMEOUT)
}
fn heartbeat_frequency(&self) -> Duration {
self.client_options
.heartbeat_freq
.unwrap_or(DEFAULT_HEARTBEAT_FREQUENCY)
}
}
/// The monitor used for tracking the round-trip-time to the server, as described in the SDAM spec.
/// This monitor uses its own connection to make RTT measurements, and it publishes the averages of
/// those measurements to a channel.
struct RttMonitor {
sender: Arc<watch::Sender<RttInfo>>,
connection: Option<Connection>,
topology: TopologyWatcher,
address: ServerAddress,
client_options: ClientOptions,
connection_establisher: ConnectionEstablisher,
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct RttInfo {
pub(crate) average: Option<Duration>,
}
impl RttInfo {
pub(crate) fn add_sample(&mut self, sample: Duration) {
match self.average {
Some(old_rtt) => {
// Average is 20% most recent sample and 80% prior sample.
self.average = Some((sample / 5) + (old_rtt * 4 / 5))
}
None => self.average = Some(sample),
}
}
}
impl RttMonitor {
/// Creates a new RTT monitor for the server at the given address, returning a receiver that the
/// RTT statistics will be published to. This does not start the monitor.
/// [`RttMonitor::execute`] needs to be invoked to start it.
fn new(
address: ServerAddress,
topology: TopologyWatcher,
connection_establisher: ConnectionEstablisher,
client_options: ClientOptions,
) -> (Self, RttMonitorHandle) {
let (sender, rtt_receiver) = watch::channel(RttInfo { average: None });
let sender = Arc::new(sender);
let monitor = Self {
address,
connection: None,
topology,
client_options,
connection_establisher,
sender: sender.clone(),
};
let handle = RttMonitorHandle {
reset_sender: sender,
rtt_receiver,
};
(monitor, handle)
}
async fn execute(mut self) {
// keep executing until either the topology is closed or server monitor is done (i.e. the
// sender is closed)
while self.topology.is_alive() && !self.sender.is_closed() {
let timeout = self
.client_options
.connect_timeout
.unwrap_or(DEFAULT_CONNECT_TIMEOUT);
let perform_check = async {
match self.connection {
Some(ref mut conn) => {
let command = hello_command(
self.client_options.server_api.as_ref(),
self.client_options.load_balanced,
Some(conn.stream_description()?.hello_ok),
None,
);
conn.send_command(command, None).await?;
}
None => {
let connection = self
.connection_establisher
.establish_monitoring_connection(
self.address.clone(),
next_monitoring_connection_id(),
)
.await?
.0;
self.connection = Some(connection);
}
};
Result::Ok(())
};
let start = Instant::now();
let check_succeded = tokio::select! {
r = perform_check => r.is_ok(),
_ = runtime::delay_for(timeout) => {
false
}
};
if check_succeded {
self.sender
.send_modify(|rtt_info| rtt_info.add_sample(start.elapsed()));
} else {
// From the SDAM spec: "Errors encountered when running a hello or legacy hello
// command MUST NOT update the topology."
self.connection = None;
// Also from the SDAM spec: "Don't call reset() here. The Monitor thread is
// responsible for resetting the average RTT."
}
runtime::delay_for(
self.client_options
.heartbeat_freq
.unwrap_or(DEFAULT_HEARTBEAT_FREQUENCY),
)
.await;
}
}
}
struct RttMonitorHandle {
rtt_receiver: watch::Receiver<RttInfo>,
reset_sender: Arc<watch::Sender<RttInfo>>,
}
impl RttMonitorHandle {
fn average_rtt(&self) -> Option<Duration> {
self.rtt_receiver.borrow().average
}
fn reset_average_rtt(&mut self) {
let _ = self.reset_sender.send(RttInfo::default());
}
fn add_sample(&mut self, sample: Duration) {
self.reset_sender.send_modify(|rtt_info| {
rtt_info.add_sample(sample);
});
}
}
#[allow(clippy::large_enum_variant)] // The Ok branch is bigger but more common
#[derive(Debug, Clone)]
enum HelloResult {
Ok(HelloReply),
Err(Error),
Cancelled { reason: Error },
}
/// Struct used to keep a monitor alive, individually request an immediate check, and to cancel
/// in-progress checks.
#[derive(Debug, Clone)]
pub(crate) struct MonitorManager {
/// `WorkerHandle` used to keep the monitor alive. When this is dropped, the monitor will exit.
handle: WorkerHandle,
/// Sender used to cancel in-progress monitor checks and, if the reason is TopologyClosed,
/// close the monitor.
cancellation_sender: Arc<watch::Sender<CancellationReason>>,
/// Sender used to individually request an immediate check from the monitor associated with
/// this manager.
check_requester: Arc<watch::Sender<()>>,
}
impl MonitorManager {
pub(crate) fn new(monitor_handle: WorkerHandle) -> Self {
// The CancellationReason used as the initial value is just a placeholder. The only receiver
// that could have seen it is dropped in this scope, and the monitor's receiver will
// never observe it.
let (tx, _) = watch::channel(CancellationReason::ServerClosed);
let check_requester = Arc::new(watch::channel(()).0);
MonitorManager {
handle: monitor_handle,
cancellation_sender: Arc::new(tx),
check_requester,
}
}
/// Cancel any in progress checks, notify the monitor that it should close, and wait for it to
/// do so.
pub(crate) async fn close_monitor(self) {
drop(self.handle);
let _ = self
.cancellation_sender
.send(CancellationReason::ServerClosed);
self.cancellation_sender.closed().await;
}
/// Cancel any in progress check with the provided reason.
pub(crate) fn cancel_in_progress_check(&mut self, reason: impl Into<CancellationReason>) {
let _ = self.cancellation_sender.send(reason.into());
}
/// Request an immediate topology check by this monitor. If the monitor is currently performing
/// a check, this request will be ignored.
pub(crate) fn request_immediate_check(&mut self) {
let _ = self.check_requester.send(());
}
}
/// Struct used to receive cancellation and immediate check requests from various different places.
pub(crate) struct MonitorRequestReceiver {
/// Handle listener used to determine whether this monitor should continue to execute or not.
/// The `MonitorManager` owned by the `TopologyWorker` owns the handle that this listener
/// corresponds to.
handle_listener: WorkerHandleListener,
/// Receiver for cancellation requests. These come in when an operation encounters network
/// errors or when the topology is closed.
cancellation_receiver: watch::Receiver<CancellationReason>,
/// Receiver used to listen for immediate check requests sent by the `TopologyWorker` that only
/// apply to the server associated with the monitor, not for the whole topology.
individual_check_request_receiver: watch::Receiver<()>,
/// Receiver used to listen for immediate check requests that were broadcast to the entire
/// topology by operations attempting to select a server.
topology_check_request_receiver: TopologyCheckRequestReceiver,
}
#[derive(Debug, Clone)]
pub(crate) enum CancellationReason {
Error(Error),
ServerClosed,
}
impl From<Error> for CancellationReason {
fn from(e: Error) -> Self {
Self::Error(e)
}
}
impl MonitorRequestReceiver {
pub(crate) fn new(
manager: &MonitorManager,
topology_check_request_receiver: TopologyCheckRequestReceiver,
handle_listener: WorkerHandleListener,
) -> Self {
Self {
handle_listener,
cancellation_receiver: manager.cancellation_sender.subscribe(),
individual_check_request_receiver: manager.check_requester.subscribe(),
topology_check_request_receiver,
}
}
/// Wait for a request to cancel the current in-progress check to come in, returning the reason
/// for it. Any check requests that are received during this time will be ignored, as per
/// the spec.
async fn wait_for_cancellation(&mut self) -> CancellationReason {
let err = if self.cancellation_receiver.changed().await.is_ok() {
self.cancellation_receiver.borrow().clone()
} else {
CancellationReason::ServerClosed
};
// clear out ignored check requests
self.individual_check_request_receiver.borrow_and_update();
err
}
/// Wait for a request to immediately check the server to be received, guarded by the provided
/// timeout. If the server associated with this monitor is removed from the topology, this
/// method will return.
///
/// The `delay` parameter indicates how long this method should wait before listening to
/// requests. The time spent in the delay counts toward the provided timeout.
async fn wait_for_check_request(&mut self, delay: Duration, timeout: Duration) {
let _ = runtime::timeout(timeout, async {
let wait_for_check_request = async {
runtime::delay_for(delay).await;
self.topology_check_request_receiver
.wait_for_check_request()
.await;
};
tokio::pin!(wait_for_check_request);
loop {
tokio::select! {
_ = self.individual_check_request_receiver.changed() => {
break;
}
_ = &mut wait_for_check_request => {
break;
}
_ = self.handle_listener.wait_for_all_handle_drops() => {
// Don't continue waiting after server has been removed from the topology.
break;
}
}
}
})
.await;
// clear out ignored cancellation requests while we were waiting to begin a check
self.cancellation_receiver.borrow_and_update();
}
fn is_alive(&self) -> bool {
self.handle_listener.is_alive()
}
}