Struct rust_decimal::Decimal

source ·
pub struct Decimal { /* private fields */ }
Expand description

Decimal represents a 128 bit representation of a fixed-precision decimal number. The finite set of values of type Decimal are of the form m / 10e, where m is an integer such that -296 < m < 296, and e is an integer between 0 and 28 inclusive.

Implementations§

source§

impl Decimal

source

pub const MIN: Decimal = MIN

The smallest value that can be represented by this decimal type.

Examples

Basic usage:

assert_eq!(Decimal::MIN, dec!(-79_228_162_514_264_337_593_543_950_335));
source

pub const MAX: Decimal = MAX

The largest value that can be represented by this decimal type.

Examples

Basic usage:

assert_eq!(Decimal::MAX, dec!(79_228_162_514_264_337_593_543_950_335));
source

pub const ZERO: Decimal = ZERO

A constant representing 0.

Examples

Basic usage:

assert_eq!(Decimal::ZERO, dec!(0));
source

pub const ONE: Decimal = ONE

A constant representing 1.

Examples

Basic usage:

assert_eq!(Decimal::ONE, dec!(1));
source

pub const NEGATIVE_ONE: Decimal = NEGATIVE_ONE

A constant representing -1.

Examples

Basic usage:

assert_eq!(Decimal::NEGATIVE_ONE, dec!(-1));
source

pub const TWO: Decimal = TWO

A constant representing 2.

Examples

Basic usage:

assert_eq!(Decimal::TWO, dec!(2));
source

pub const TEN: Decimal = TEN

A constant representing 10.

Examples

Basic usage:

assert_eq!(Decimal::TEN, dec!(10));
source

pub const ONE_HUNDRED: Decimal = ONE_HUNDRED

A constant representing 100.

Examples

Basic usage:

assert_eq!(Decimal::ONE_HUNDRED, dec!(100));
source

pub const ONE_THOUSAND: Decimal = ONE_THOUSAND

A constant representing 1000.

Examples

Basic usage:

assert_eq!(Decimal::ONE_THOUSAND, dec!(1000));
source

pub fn new(num: i64, scale: u32) -> Decimal

Returns a Decimal with a 64 bit m representation and corresponding e scale.

Arguments
  • num - An i64 that represents the m portion of the decimal number
  • scale - A u32 representing the e portion of the decimal number.
Panics

This function panics if scale is > 28.

Example
let pi = Decimal::new(3141, 3);
assert_eq!(pi.to_string(), "3.141");
source

pub const fn try_new(num: i64, scale: u32) -> Result<Decimal>

Checked version of Decimal::new. Will return Err instead of panicking at run-time.

Example
let max = Decimal::try_new(i64::MAX, u32::MAX);
assert!(max.is_err());
source

pub fn from_i128_with_scale(num: i128, scale: u32) -> Decimal

Creates a Decimal using a 128 bit signed m representation and corresponding e scale.

Arguments
  • num - An i128 that represents the m portion of the decimal number
  • scale - A u32 representing the e portion of the decimal number.
Panics

This function panics if scale is > 28 or if num exceeds the maximum supported 96 bits.

Example
let pi = Decimal::from_i128_with_scale(3141i128, 3);
assert_eq!(pi.to_string(), "3.141");
source

pub const fn try_from_i128_with_scale(num: i128, scale: u32) -> Result<Decimal>

Checked version of Decimal::from_i128_with_scale. Will return Err instead of panicking at run-time.

Example
let max = Decimal::try_from_i128_with_scale(i128::MAX, u32::MAX);
assert!(max.is_err());
source

pub const fn from_parts( lo: u32, mid: u32, hi: u32, negative: bool, scale: u32 ) -> Decimal

Returns a Decimal using the instances constituent parts.

Arguments
  • lo - The low 32 bits of a 96-bit integer.
  • mid - The middle 32 bits of a 96-bit integer.
  • hi - The high 32 bits of a 96-bit integer.
  • negative - true to indicate a negative number.
  • scale - A power of 10 ranging from 0 to 28.
Caution: Undefined behavior

While a scale greater than 28 can be passed in, it will be automatically capped by this function at the maximum precision. The library opts towards this functionality as opposed to a panic to ensure that the function can be treated as constant. This may lead to undefined behavior in downstream applications and should be treated with caution.

Example
let pi = Decimal::from_parts(1102470952, 185874565, 1703060790, false, 28);
assert_eq!(pi.to_string(), "3.1415926535897932384626433832");
source

pub fn from_scientific(value: &str) -> Result<Decimal, Error>

Returns a Result which if successful contains the Decimal constitution of the scientific notation provided by value.

Arguments
  • value - The scientific notation of the Decimal.
Example
let value = Decimal::from_scientific("9.7e-7")?;
assert_eq!(value.to_string(), "0.00000097");
source

pub fn from_str_radix(str: &str, radix: u32) -> Result<Self, Error>

Converts a string slice in a given base to a decimal.

The string is expected to be an optional + sign followed by digits. Digits are a subset of these characters, depending on radix, and will return an error if outside the expected range:

  • 0-9
  • a-z
  • A-Z
Examples

Basic usage:

assert_eq!(Decimal::from_str_radix("A", 16)?.to_string(), "10");
source

pub fn from_str_exact(str: &str) -> Result<Self, Error>

Parses a string slice into a decimal. If the value underflows and cannot be represented with the given scale then this will return an error.

Examples

Basic usage:

assert_eq!(Decimal::from_str_exact("0.001")?.to_string(), "0.001");
assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_001")?.to_string(), "0.0000000000000000000000000001");
assert_eq!(Decimal::from_str_exact("0.00000_00000_00000_00000_00000_0001"), Err(Error::Underflow));
source

pub const fn scale(&self) -> u32

Returns the scale of the decimal number, otherwise known as e.

Example
let num = Decimal::new(1234, 3);
assert_eq!(num.scale(), 3u32);
source

pub const fn mantissa(&self) -> i128

Returns the mantissa of the decimal number.

Example
use rust_decimal_macros::dec;

let num = dec!(-1.2345678);
assert_eq!(num.mantissa(), -12345678i128);
assert_eq!(num.scale(), 7);
source

pub const fn is_zero(&self) -> bool

Returns true if this Decimal number is equivalent to zero.

Example
let num = Decimal::ZERO;
assert!(num.is_zero());
source

pub fn is_integer(&self) -> bool

Returns true if this Decimal number has zero fractional part (is equal to an integer)

Example
assert_eq!(dec!(5).is_integer(), true);
// Trailing zeros are also ignored
assert_eq!(dec!(5.0000).is_integer(), true);
// If there is a fractional part then it is not an integer
assert_eq!(dec!(5.1).is_integer(), false);
source

pub fn set_sign(&mut self, positive: bool)

👎Deprecated since 1.4.0: please use set_sign_positive instead

An optimized method for changing the sign of a decimal number.

Arguments
  • positive: true if the resulting decimal should be positive.
Example
let mut one = Decimal::ONE;
one.set_sign(false);
assert_eq!(one.to_string(), "-1");
source

pub fn set_sign_positive(&mut self, positive: bool)

An optimized method for changing the sign of a decimal number.

Arguments
  • positive: true if the resulting decimal should be positive.
Example
let mut one = Decimal::ONE;
one.set_sign_positive(false);
assert_eq!(one.to_string(), "-1");
source

pub fn set_sign_negative(&mut self, negative: bool)

An optimized method for changing the sign of a decimal number.

Arguments
  • negative: true if the resulting decimal should be negative.
Example
let mut one = Decimal::ONE;
one.set_sign_negative(true);
assert_eq!(one.to_string(), "-1");
source

pub fn set_scale(&mut self, scale: u32) -> Result<(), Error>

An optimized method for changing the scale of a decimal number.

Arguments
  • scale: the new scale of the number
Example
let mut one = Decimal::ONE;
one.set_scale(5)?;
assert_eq!(one.to_string(), "0.00001");
source

pub fn rescale(&mut self, scale: u32)

Modifies the Decimal towards the desired scale, attempting to do so without changing the underlying number itself.

Setting the scale to something less then the current Decimals scale will cause the newly created Decimal to perform rounding using the MidpointAwayFromZero strategy.

Scales greater than the maximum precision that can be represented by Decimal will be automatically rounded to either Decimal::MAX_PRECISION or the maximum precision that can be represented with the given mantissa.

Arguments
  • scale: The desired scale to use for the new Decimal number.
Example
use rust_decimal_macros::dec;

// Rescaling to a higher scale preserves the value
let mut number = dec!(1.123);
assert_eq!(number.scale(), 3);
number.rescale(6);
assert_eq!(number.to_string(), "1.123000");
assert_eq!(number.scale(), 6);

// Rescaling to a lower scale forces the number to be rounded
let mut number = dec!(1.45);
assert_eq!(number.scale(), 2);
number.rescale(1);
assert_eq!(number.to_string(), "1.5");
assert_eq!(number.scale(), 1);

// This function never fails. Consequently, if a scale is provided that is unable to be
// represented using the given mantissa, then the maximum possible scale is used.
let mut number = dec!(11.76470588235294);
assert_eq!(number.scale(), 14);
number.rescale(28);
// A scale of 28 cannot be represented given this mantissa, however it was able to represent
// a number with a scale of 27
assert_eq!(number.to_string(), "11.764705882352940000000000000");
assert_eq!(number.scale(), 27);
source

pub const fn serialize(&self) -> [u8; 16]

Returns a serialized version of the decimal number. The resulting byte array will have the following representation:

  • Bytes 1-4: flags
  • Bytes 5-8: lo portion of m
  • Bytes 9-12: mid portion of m
  • Bytes 13-16: high portion of m
source

pub fn deserialize(bytes: [u8; 16]) -> Decimal

Deserializes the given bytes into a decimal number. The deserialized byte representation must be 16 bytes and adhere to the following convention:

  • Bytes 1-4: flags
  • Bytes 5-8: lo portion of m
  • Bytes 9-12: mid portion of m
  • Bytes 13-16: high portion of m
source

pub fn is_negative(&self) -> bool

👎Deprecated since 0.6.3: please use is_sign_negative instead

Returns true if the decimal is negative.

source

pub fn is_positive(&self) -> bool

👎Deprecated since 0.6.3: please use is_sign_positive instead

Returns true if the decimal is positive.

source

pub const fn is_sign_negative(&self) -> bool

Returns true if the sign bit of the decimal is negative.

Example
assert_eq!(true, Decimal::new(-1, 0).is_sign_negative());
assert_eq!(false, Decimal::new(1, 0).is_sign_negative());
source

pub const fn is_sign_positive(&self) -> bool

Returns true if the sign bit of the decimal is positive.

Example
assert_eq!(false, Decimal::new(-1, 0).is_sign_positive());
assert_eq!(true, Decimal::new(1, 0).is_sign_positive());
source

pub const fn min_value() -> Decimal

👎Deprecated since 1.12.0: Use the associated constant Decimal::MIN

Returns the minimum possible number that Decimal can represent.

source

pub const fn max_value() -> Decimal

👎Deprecated since 1.12.0: Use the associated constant Decimal::MAX

Returns the maximum possible number that Decimal can represent.

source

pub fn trunc(&self) -> Decimal

Returns a new Decimal integral with no fractional portion. This is a true truncation whereby no rounding is performed.

Example
let pi = dec!(3.141);
assert_eq!(pi.trunc(), dec!(3));

// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc(), Decimal::NEGATIVE_ONE);
source

pub fn trunc_with_scale(&self, scale: u32) -> Decimal

Returns a new Decimal with the fractional portion delimited by scale. This is a true truncation whereby no rounding is performed.

Example
let pi = dec!(3.141592);
assert_eq!(pi.trunc_with_scale(2), dec!(3.14));

// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc_with_scale(1), dec!(-1.9));
source

pub fn fract(&self) -> Decimal

Returns a new Decimal representing the fractional portion of the number.

Example
let pi = Decimal::new(3141, 3);
let fract = Decimal::new(141, 3);
// note that it returns a decimal
assert_eq!(pi.fract(), fract);
source

pub fn abs(&self) -> Decimal

Computes the absolute value of self.

Example
let num = Decimal::new(-3141, 3);
assert_eq!(num.abs().to_string(), "3.141");
source

pub fn floor(&self) -> Decimal

Returns the largest integer less than or equal to a number.

Example
let num = Decimal::new(3641, 3);
assert_eq!(num.floor().to_string(), "3");
source

pub fn ceil(&self) -> Decimal

Returns the smallest integer greater than or equal to a number.

Example
let num = Decimal::new(3141, 3);
assert_eq!(num.ceil().to_string(), "4");
let num = Decimal::new(3, 0);
assert_eq!(num.ceil().to_string(), "3");
source

pub fn max(self, other: Decimal) -> Decimal

Returns the maximum of the two numbers.

let x = Decimal::new(1, 0);
let y = Decimal::new(2, 0);
assert_eq!(y, x.max(y));
source

pub fn min(self, other: Decimal) -> Decimal

Returns the minimum of the two numbers.

let x = Decimal::new(1, 0);
let y = Decimal::new(2, 0);
assert_eq!(x, x.min(y));
source

pub fn normalize(&self) -> Decimal

Strips any trailing zero’s from a Decimal and converts -0 to 0.

Example
let number = Decimal::from_str("3.100")?;
assert_eq!(number.normalize().to_string(), "3.1");
source

pub fn normalize_assign(&mut self)

An in place version of normalize. Strips any trailing zero’s from a Decimal and converts -0 to 0.

Example
let mut number = Decimal::from_str("3.100")?;
assert_eq!(number.to_string(), "3.100");
number.normalize_assign();
assert_eq!(number.to_string(), "3.1");
source

pub fn round(&self) -> Decimal

Returns a new Decimal number with no fractional portion (i.e. an integer). Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8

Example
// Demonstrating bankers rounding...
let number_down = Decimal::new(65, 1);
let number_up   = Decimal::new(75, 1);
assert_eq!(number_down.round().to_string(), "6");
assert_eq!(number_up.round().to_string(), "8");
source

pub fn round_dp_with_strategy( &self, dp: u32, strategy: RoundingStrategy ) -> Decimal

Returns a new Decimal number with the specified number of decimal points for fractional portion. Rounding is performed using the provided RoundingStrategy

Arguments
  • dp: the number of decimal points to round to.
  • strategy: the RoundingStrategy to use.
Example
let tax = dec!(3.4395);
assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::MidpointAwayFromZero).to_string(), "3.44");
source

pub fn round_dp(&self, dp: u32) -> Decimal

Returns a new Decimal number with the specified number of decimal points for fractional portion. Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8

Arguments
  • dp: the number of decimal points to round to.
Example
let pi = dec!(3.1415926535897932384626433832);
assert_eq!(pi.round_dp(2).to_string(), "3.14");
source

pub fn round_sf(&self, digits: u32) -> Option<Decimal>

Returns Some(Decimal) number rounded to the specified number of significant digits. If the resulting number is unable to be represented by the Decimal number then None will be returned. When the number of significant figures of the Decimal being rounded is greater than the requested number of significant digits then rounding will be performed using MidpointNearestEven strategy.

Arguments
  • digits: the number of significant digits to round to.
Remarks

A significant figure is determined using the following rules:

  1. Non-zero digits are always significant.
  2. Zeros between non-zero digits are always significant.
  3. Leading zeros are never significant.
  4. Trailing zeros are only significant if the number contains a decimal point.
Example
use rust_decimal_macros::dec;

let value = dec!(305.459);
assert_eq!(value.round_sf(0), Some(dec!(0)));
assert_eq!(value.round_sf(1), Some(dec!(300)));
assert_eq!(value.round_sf(2), Some(dec!(310)));
assert_eq!(value.round_sf(3), Some(dec!(305)));
assert_eq!(value.round_sf(4), Some(dec!(305.5)));
assert_eq!(value.round_sf(5), Some(dec!(305.46)));
assert_eq!(value.round_sf(6), Some(dec!(305.459)));
assert_eq!(value.round_sf(7), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf(1), None);

let value = dec!(0.012301);
assert_eq!(value.round_sf(3), Some(dec!(0.0123)));
source

pub fn round_sf_with_strategy( &self, digits: u32, strategy: RoundingStrategy ) -> Option<Decimal>

Returns Some(Decimal) number rounded to the specified number of significant digits. If the resulting number is unable to be represented by the Decimal number then None will be returned. When the number of significant figures of the Decimal being rounded is greater than the requested number of significant digits then rounding will be performed using the provided RoundingStrategy.

Arguments
  • digits: the number of significant digits to round to.
  • strategy: if required, the rounding strategy to use.
Remarks

A significant figure is determined using the following rules:

  1. Non-zero digits are always significant.
  2. Zeros between non-zero digits are always significant.
  3. Leading zeros are never significant.
  4. Trailing zeros are only significant if the number contains a decimal point.
Example
use rust_decimal_macros::dec;

let value = dec!(305.459);
assert_eq!(value.round_sf_with_strategy(0, RoundingStrategy::ToZero), Some(dec!(0)));
assert_eq!(value.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(2, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::ToZero), Some(dec!(305)));
assert_eq!(value.round_sf_with_strategy(4, RoundingStrategy::ToZero), Some(dec!(305.4)));
assert_eq!(value.round_sf_with_strategy(5, RoundingStrategy::ToZero), Some(dec!(305.45)));
assert_eq!(value.round_sf_with_strategy(6, RoundingStrategy::ToZero), Some(dec!(305.459)));
assert_eq!(value.round_sf_with_strategy(7, RoundingStrategy::ToZero), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(70000000000000000000000000000)));

let value = dec!(0.012301);
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::AwayFromZero), Some(dec!(0.0124)));
source

pub const fn unpack(&self) -> UnpackedDecimal

Convert Decimal to an internal representation of the underlying struct. This is useful for debugging the internal state of the object.

Important Disclaimer

This is primarily intended for library maintainers. The internal representation of a Decimal is considered “unstable” for public use.

Example
use rust_decimal_macros::dec;

let pi = dec!(3.1415926535897932384626433832);
assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
    negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
}");
source

pub fn from_f32_retain(n: f32) -> Option<Self>

Parses a 32-bit float into a Decimal number whilst retaining any non-guaranteed precision.

Typically when a float is parsed in Rust Decimal, any excess bits (after ~7.22 decimal points for f32 as per IEEE-754) are removed due to any digits following this are considered an approximation at best. This function bypasses this additional step and retains these excess bits.

Example
// Usually floats are parsed leveraging float guarantees. i.e. 0.1_f32 => 0.1
assert_eq!("0.1", Decimal::from_f32(0.1_f32).unwrap().to_string());

// Sometimes, we may want to represent the approximation exactly.
assert_eq!("0.100000001490116119384765625", Decimal::from_f32_retain(0.1_f32).unwrap().to_string());
source

pub fn from_f64_retain(n: f64) -> Option<Self>

Parses a 64-bit float into a Decimal number whilst retaining any non-guaranteed precision.

Typically when a float is parsed in Rust Decimal, any excess bits (after ~15.95 decimal points for f64 as per IEEE-754) are removed due to any digits following this are considered an approximation at best. This function bypasses this additional step and retains these excess bits.

Example
// Usually floats are parsed leveraging float guarantees. i.e. 0.1_f64 => 0.1
assert_eq!("0.1", Decimal::from_f64(0.1_f64).unwrap().to_string());

// Sometimes, we may want to represent the approximation exactly.
assert_eq!("0.1000000000000000055511151231", Decimal::from_f64_retain(0.1_f64).unwrap().to_string());
source§

impl Decimal

source

pub fn checked_add(self, other: Decimal) -> Option<Decimal>

Checked addition. Computes self + other, returning None if overflow occurred.

source

pub fn saturating_add(self, other: Decimal) -> Decimal

Saturating addition. Computes self + other, saturating at the relevant upper or lower boundary.

source

pub fn checked_mul(self, other: Decimal) -> Option<Decimal>

Checked multiplication. Computes self * other, returning None if overflow occurred.

source

pub fn saturating_mul(self, other: Decimal) -> Decimal

Saturating multiplication. Computes self * other, saturating at the relevant upper or lower boundary.

source

pub fn checked_sub(self, other: Decimal) -> Option<Decimal>

Checked subtraction. Computes self - other, returning None if overflow occurred.

source

pub fn saturating_sub(self, other: Decimal) -> Decimal

Saturating subtraction. Computes self - other, saturating at the relevant upper or lower boundary.

source

pub fn checked_div(self, other: Decimal) -> Option<Decimal>

Checked division. Computes self / other, returning None if overflow occurred.

source

pub fn checked_rem(self, other: Decimal) -> Option<Decimal>

Checked remainder. Computes self % other, returning None if overflow occurred.

Trait Implementations§

source§

impl<'a, 'b> Add<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
source§

fn add(self, other: &Decimal) -> Decimal

Performs the + operation. Read more
source§

impl<'a> Add<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
source§

fn add(self, other: &Decimal) -> Decimal

Performs the + operation. Read more
source§

impl<'a> Add<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
source§

fn add(self, other: Decimal) -> Decimal

Performs the + operation. Read more
source§

impl Add for Decimal

§

type Output = Decimal

The resulting type after applying the + operator.
source§

fn add(self, other: Decimal) -> Decimal

Performs the + operation. Read more
source§

impl<'a> AddAssign<&'a Decimal> for &'a mut Decimal

source§

fn add_assign(&mut self, other: &'a Decimal)

Performs the += operation. Read more
source§

impl<'a> AddAssign<&'a Decimal> for Decimal

source§

fn add_assign(&mut self, other: &'a Decimal)

Performs the += operation. Read more
source§

impl<'a> AddAssign<Decimal> for &'a mut Decimal

source§

fn add_assign(&mut self, other: Decimal)

Performs the += operation. Read more
source§

impl AddAssign for Decimal

source§

fn add_assign(&mut self, other: Decimal)

Performs the += operation. Read more
source§

impl CheckedAdd for Decimal

source§

fn checked_add(&self, v: &Decimal) -> Option<Decimal>

Adds two numbers, checking for overflow. If overflow happens, None is returned.
source§

impl CheckedDiv for Decimal

source§

fn checked_div(&self, v: &Decimal) -> Option<Decimal>

Divides two numbers, checking for underflow, overflow and division by zero. If any of that happens, None is returned.
source§

impl CheckedMul for Decimal

source§

fn checked_mul(&self, v: &Decimal) -> Option<Decimal>

Multiplies two numbers, checking for underflow or overflow. If underflow or overflow happens, None is returned.
source§

impl CheckedRem for Decimal

source§

fn checked_rem(&self, v: &Decimal) -> Option<Decimal>

Finds the remainder of dividing two numbers, checking for underflow, overflow and division by zero. If any of that happens, None is returned. Read more
source§

impl CheckedSub for Decimal

source§

fn checked_sub(&self, v: &Decimal) -> Option<Decimal>

Subtracts two numbers, checking for underflow. If underflow happens, None is returned.
source§

impl Clone for Decimal

source§

fn clone(&self) -> Decimal

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Decimal

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Default for Decimal

source§

fn default() -> Self

Returns the default value for a Decimal (equivalent to Decimal::ZERO). Read more

source§

impl<'de> Deserialize<'de> for Decimal

source§

fn deserialize<D>(deserializer: D) -> Result<Decimal, D::Error>where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl Display for Decimal

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<'a, 'b> Div<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
source§

fn div(self, other: &Decimal) -> Decimal

Performs the / operation. Read more
source§

impl<'a> Div<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
source§

fn div(self, other: &Decimal) -> Decimal

Performs the / operation. Read more
source§

impl<'a> Div<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
source§

fn div(self, other: Decimal) -> Decimal

Performs the / operation. Read more
source§

impl Div for Decimal

§

type Output = Decimal

The resulting type after applying the / operator.
source§

fn div(self, other: Decimal) -> Decimal

Performs the / operation. Read more
source§

impl<'a> DivAssign<&'a Decimal> for &'a mut Decimal

source§

fn div_assign(&mut self, other: &'a Decimal)

Performs the /= operation. Read more
source§

impl<'a> DivAssign<&'a Decimal> for Decimal

source§

fn div_assign(&mut self, other: &'a Decimal)

Performs the /= operation. Read more
source§

impl<'a> DivAssign<Decimal> for &'a mut Decimal

source§

fn div_assign(&mut self, other: Decimal)

Performs the /= operation. Read more
source§

impl DivAssign for Decimal

source§

fn div_assign(&mut self, other: Decimal)

Performs the /= operation. Read more
source§

impl From<i128> for Decimal

Conversion to Decimal.

source§

fn from(t: i128) -> Self

Converts to this type from the input type.
source§

impl From<i16> for Decimal

Conversion to Decimal.

source§

fn from(t: i16) -> Self

Converts to this type from the input type.
source§

impl From<i32> for Decimal

Conversion to Decimal.

source§

fn from(t: i32) -> Self

Converts to this type from the input type.
source§

impl From<i64> for Decimal

Conversion to Decimal.

source§

fn from(t: i64) -> Self

Converts to this type from the input type.
source§

impl From<i8> for Decimal

Conversion to Decimal.

source§

fn from(t: i8) -> Self

Converts to this type from the input type.
source§

impl From<isize> for Decimal

Conversion to Decimal.

source§

fn from(t: isize) -> Self

Converts to this type from the input type.
source§

impl From<u128> for Decimal

Conversion to Decimal.

source§

fn from(t: u128) -> Self

Converts to this type from the input type.
source§

impl From<u16> for Decimal

Conversion to Decimal.

source§

fn from(t: u16) -> Self

Converts to this type from the input type.
source§

impl From<u32> for Decimal

Conversion to Decimal.

source§

fn from(t: u32) -> Self

Converts to this type from the input type.
source§

impl From<u64> for Decimal

Conversion to Decimal.

source§

fn from(t: u64) -> Self

Converts to this type from the input type.
source§

impl From<u8> for Decimal

Conversion to Decimal.

source§

fn from(t: u8) -> Self

Converts to this type from the input type.
source§

impl From<usize> for Decimal

Conversion to Decimal.

source§

fn from(t: usize) -> Self

Converts to this type from the input type.
source§

impl FromPrimitive for Decimal

source§

fn from_i32(n: i32) -> Option<Decimal>

Converts an i32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_i64(n: i64) -> Option<Decimal>

Converts an i64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_i128(n: i128) -> Option<Decimal>

Converts an i128 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
source§

fn from_u32(n: u32) -> Option<Decimal>

Converts an u32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_u64(n: u64) -> Option<Decimal>

Converts an u64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_u128(n: u128) -> Option<Decimal>

Converts an u128 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
source§

fn from_f32(n: f32) -> Option<Decimal>

Converts a f32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_f64(n: f64) -> Option<Decimal>

Converts a f64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
source§

fn from_isize(n: isize) -> Option<Self>

Converts an isize to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_i8(n: i8) -> Option<Self>

Converts an i8 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_i16(n: i16) -> Option<Self>

Converts an i16 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_usize(n: usize) -> Option<Self>

Converts a usize to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_u8(n: u8) -> Option<Self>

Converts an u8 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

fn from_u16(n: u16) -> Option<Self>

Converts an u16 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
source§

impl FromStr for Decimal

§

type Err = Error

The associated error which can be returned from parsing.
source§

fn from_str(value: &str) -> Result<Decimal, Self::Err>

Parses a string s to return a value of this type. Read more
source§

impl Hash for Decimal

source§

fn hash<H: Hasher>(&self, state: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl Inv for Decimal

§

type Output = Decimal

The result after applying the operator.
source§

fn inv(self) -> Self

Returns the multiplicative inverse of self. Read more
source§

impl LowerExp for Decimal

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter.
source§

impl<'a, 'b> Mul<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
source§

fn mul(self, other: &Decimal) -> Decimal

Performs the * operation. Read more
source§

impl<'a> Mul<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
source§

fn mul(self, other: &Decimal) -> Decimal

Performs the * operation. Read more
source§

impl<'a> Mul<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
source§

fn mul(self, other: Decimal) -> Decimal

Performs the * operation. Read more
source§

impl Mul for Decimal

§

type Output = Decimal

The resulting type after applying the * operator.
source§

fn mul(self, other: Decimal) -> Decimal

Performs the * operation. Read more
source§

impl<'a> MulAssign<&'a Decimal> for &'a mut Decimal

source§

fn mul_assign(&mut self, other: &'a Decimal)

Performs the *= operation. Read more
source§

impl<'a> MulAssign<&'a Decimal> for Decimal

source§

fn mul_assign(&mut self, other: &'a Decimal)

Performs the *= operation. Read more
source§

impl<'a> MulAssign<Decimal> for &'a mut Decimal

source§

fn mul_assign(&mut self, other: Decimal)

Performs the *= operation. Read more
source§

impl MulAssign for Decimal

source§

fn mul_assign(&mut self, other: Decimal)

Performs the *= operation. Read more
source§

impl<'a> Neg for &'a Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
source§

fn neg(self) -> Decimal

Performs the unary - operation. Read more
source§

impl Neg for Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
source§

fn neg(self) -> Decimal

Performs the unary - operation. Read more
source§

impl Num for Decimal

§

type FromStrRadixErr = Error

source§

fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>

Convert from a string and radix (typically 2..=36). Read more
source§

impl One for Decimal

source§

fn one() -> Decimal

Returns the multiplicative identity element of Self, 1. Read more
source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> boolwhere Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl Ord for Decimal

source§

fn cmp(&self, other: &Decimal) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Selfwhere Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
source§

impl PartialEq for Decimal

source§

fn eq(&self, other: &Decimal) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd for Decimal

source§

fn partial_cmp(&self, other: &Decimal) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<'a> Product<&'a Decimal> for Decimal

source§

fn product<I: Iterator<Item = &'a Decimal>>(iter: I) -> Self

Panics if out-of-bounds

source§

impl Product for Decimal

source§

fn product<I: Iterator<Item = Decimal>>(iter: I) -> Self

Panics if out-of-bounds

source§

impl<'a, 'b> Rem<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
source§

fn rem(self, other: &Decimal) -> Decimal

Performs the % operation. Read more
source§

impl<'a> Rem<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
source§

fn rem(self, other: &Decimal) -> Decimal

Performs the % operation. Read more
source§

impl<'a> Rem<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
source§

fn rem(self, other: Decimal) -> Decimal

Performs the % operation. Read more
source§

impl Rem for Decimal

§

type Output = Decimal

The resulting type after applying the % operator.
source§

fn rem(self, other: Decimal) -> Decimal

Performs the % operation. Read more
source§

impl<'a> RemAssign<&'a Decimal> for &'a mut Decimal

source§

fn rem_assign(&mut self, other: &'a Decimal)

Performs the %= operation. Read more
source§

impl<'a> RemAssign<&'a Decimal> for Decimal

source§

fn rem_assign(&mut self, other: &'a Decimal)

Performs the %= operation. Read more
source§

impl<'a> RemAssign<Decimal> for &'a mut Decimal

source§

fn rem_assign(&mut self, other: Decimal)

Performs the %= operation. Read more
source§

impl RemAssign for Decimal

source§

fn rem_assign(&mut self, other: Decimal)

Performs the %= operation. Read more
source§

impl Serialize for Decimal

source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl Signed for Decimal

source§

fn abs(&self) -> Self

Computes the absolute value. Read more
source§

fn abs_sub(&self, other: &Self) -> Self

The positive difference of two numbers. Read more
source§

fn signum(&self) -> Self

Returns the sign of the number. Read more
source§

fn is_positive(&self) -> bool

Returns true if the number is positive and false if the number is zero or negative.
source§

fn is_negative(&self) -> bool

Returns true if the number is negative and false if the number is zero or positive.
source§

impl<'a, 'b> Sub<&'b Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
source§

fn sub(self, other: &Decimal) -> Decimal

Performs the - operation. Read more
source§

impl<'a> Sub<&'a Decimal> for Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
source§

fn sub(self, other: &Decimal) -> Decimal

Performs the - operation. Read more
source§

impl<'a> Sub<Decimal> for &'a Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
source§

fn sub(self, other: Decimal) -> Decimal

Performs the - operation. Read more
source§

impl Sub for Decimal

§

type Output = Decimal

The resulting type after applying the - operator.
source§

fn sub(self, other: Decimal) -> Decimal

Performs the - operation. Read more
source§

impl<'a> SubAssign<&'a Decimal> for &'a mut Decimal

source§

fn sub_assign(&mut self, other: &'a Decimal)

Performs the -= operation. Read more
source§

impl<'a> SubAssign<&'a Decimal> for Decimal

source§

fn sub_assign(&mut self, other: &'a Decimal)

Performs the -= operation. Read more
source§

impl<'a> SubAssign<Decimal> for &'a mut Decimal

source§

fn sub_assign(&mut self, other: Decimal)

Performs the -= operation. Read more
source§

impl SubAssign for Decimal

source§

fn sub_assign(&mut self, other: Decimal)

Performs the -= operation. Read more
source§

impl<'a> Sum<&'a Decimal> for Decimal

source§

fn sum<I: Iterator<Item = &'a Decimal>>(iter: I) -> Self

Method which takes an iterator and generates Self from the elements by “summing up” the items.
source§

impl Sum for Decimal

source§

fn sum<I: Iterator<Item = Decimal>>(iter: I) -> Self

Method which takes an iterator and generates Self from the elements by “summing up” the items.
source§

impl ToPrimitive for Decimal

source§

fn to_i64(&self) -> Option<i64>

Converts the value of self to an i64. If the value cannot be represented by an i64, then None is returned.
source§

fn to_i128(&self) -> Option<i128>

Converts the value of self to an i128. If the value cannot be represented by an i128 (i64 under the default implementation), then None is returned. Read more
source§

fn to_u64(&self) -> Option<u64>

Converts the value of self to a u64. If the value cannot be represented by a u64, then None is returned.
source§

fn to_u128(&self) -> Option<u128>

Converts the value of self to a u128. If the value cannot be represented by a u128 (u64 under the default implementation), then None is returned. Read more
source§

fn to_f64(&self) -> Option<f64>

Converts the value of self to an f64. Overflows may map to positive or negative inifinity, otherwise None is returned if the value cannot be represented by an f64. Read more
source§

fn to_isize(&self) -> Option<isize>

Converts the value of self to an isize. If the value cannot be represented by an isize, then None is returned.
source§

fn to_i8(&self) -> Option<i8>

Converts the value of self to an i8. If the value cannot be represented by an i8, then None is returned.
source§

fn to_i16(&self) -> Option<i16>

Converts the value of self to an i16. If the value cannot be represented by an i16, then None is returned.
source§

fn to_i32(&self) -> Option<i32>

Converts the value of self to an i32. If the value cannot be represented by an i32, then None is returned.
source§

fn to_usize(&self) -> Option<usize>

Converts the value of self to a usize. If the value cannot be represented by a usize, then None is returned.
source§

fn to_u8(&self) -> Option<u8>

Converts the value of self to a u8. If the value cannot be represented by a u8, then None is returned.
source§

fn to_u16(&self) -> Option<u16>

Converts the value of self to a u16. If the value cannot be represented by a u16, then None is returned.
source§

fn to_u32(&self) -> Option<u32>

Converts the value of self to a u32. If the value cannot be represented by a u32, then None is returned.
source§

fn to_f32(&self) -> Option<f32>

Converts the value of self to an f32. Overflows may map to positive or negative inifinity, otherwise None is returned if the value cannot be represented by an f32.
source§

impl TryFrom<&str> for Decimal

Try to convert a &str into a Decimal.

Can fail if the value is out of range for Decimal.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: &str) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for f32

Try to convert a Decimal to f32.

Can fail if the Decimal is out of range for f32.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for f64

Try to convert a Decimal to f64.

Can fail if the Decimal is out of range for f64.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for i128

Try to convert a Decimal to i128 by truncating and returning the integer component.

Can fail if the Decimal is out of range for i128.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for i16

Try to convert a Decimal to i16 by truncating and returning the integer component.

Can fail if the Decimal is out of range for i16.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for i32

Try to convert a Decimal to i32 by truncating and returning the integer component.

Can fail if the Decimal is out of range for i32.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for i64

Try to convert a Decimal to i64 by truncating and returning the integer component.

Can fail if the Decimal is out of range for i64.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for i8

Try to convert a Decimal to i8 by truncating and returning the integer component.

Can fail if the Decimal is out of range for i8.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for isize

Try to convert a Decimal to isize by truncating and returning the integer component.

Can fail if the Decimal is out of range for isize.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for u128

Try to convert a Decimal to u128 by truncating and returning the integer component.

Can fail if the Decimal is out of range for u128.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for u16

Try to convert a Decimal to u16 by truncating and returning the integer component.

Can fail if the Decimal is out of range for u16.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for u32

Try to convert a Decimal to u32 by truncating and returning the integer component.

Can fail if the Decimal is out of range for u32.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for u64

Try to convert a Decimal to u64 by truncating and returning the integer component.

Can fail if the Decimal is out of range for u64.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for u8

Try to convert a Decimal to u8 by truncating and returning the integer component.

Can fail if the Decimal is out of range for u8.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<Decimal> for usize

Try to convert a Decimal to usize by truncating and returning the integer component.

Can fail if the Decimal is out of range for usize.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: Decimal) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<f32> for Decimal

Try to convert a f32 into a Decimal.

Can fail if the value is out of range for Decimal.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: f32) -> Result<Self, Error>

Performs the conversion.
source§

impl TryFrom<f64> for Decimal

Try to convert a f64 into a Decimal.

Can fail if the value is out of range for Decimal.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(t: f64) -> Result<Self, Error>

Performs the conversion.
source§

impl UpperExp for Decimal

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter.
source§

impl Zero for Decimal

source§

fn zero() -> Decimal

Returns the additive identity element of Self, 0. Read more
source§

fn is_zero(&self) -> bool

Returns true if self is equal to the additive identity.
source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.
source§

impl Copy for Decimal

source§

impl Eq for Decimal

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,

source§

impl<T> NumAssign for Twhere T: Num + NumAssignOps,

source§

impl<T, Rhs> NumAssignOps<Rhs> for Twhere T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,

source§

impl<T> NumAssignRef for Twhere T: NumAssign + for<'r> NumAssignOps<&'r T>,

source§

impl<T, Rhs, Output> NumOps<Rhs, Output> for Twhere T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,

source§

impl<T> NumRef for Twhere T: Num + for<'r> NumOps<&'r T>,

source§

impl<T, Base> RefNum<Base> for Twhere T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base>,